Жидкий металл или термопаста что выбрать

Жидкий металл VS термопаста: что лучше и как правильно использовать

Пожалуй, каждый компьютерный пользователь хоть раз, но слышал о чудодейственных свойствах жидкого металла. Но тогда напрашивается один интересный вопрос почему при таких отличных показателях теплопроводности он так и остаётся не востребованным при сборке ПК и проигрывает термопасте? Начнём с общего обозначения слова термоинтерфейс – это многосоставное вещество обычно вязкой субстанции, которое обладает высоким уровнем теплопроводности. Его главной задачей является заполнение воздушного пространства между охлаждаемой поверхностью и отводящим тепло устройством. В текущее время существует 2 типа популярных проводников: термопаста и жидкий металл.

Жидкий металл или термопаста: что выбрать?

Пожалуй, каждый компьютерный пользователь хоть раз, но слышал о чудодейственных свойствах жидкого металла. Но тогда напрашивается один интересный вопрос почему при таких отличных показателях теплопроводности он так и остаётся не востребованным при сборке ПК и проигрывает термопасте?

Начнём с общего обозначения слова термоинтерфейс – это многосоставное вещество обычно вязкой субстанции, которое обладает высоким уровнем теплопроводности. Его главной задачей является заполнение воздушного пространства между охлаждаемой поверхностью и отводящим тепло устройством. В текущее время существует 2 типа популярных проводников: термопаста и жидкий металл.

Что из себя представляет жидкий металл

С первого взгляда этот вид термоинтерфейса можно спутать со ртутью, но это не так. Жидкий металл состоит из ряда металлов и сплавов с высоким уровнем текучести. В основном в составе используют индий, цинк, олово, или галлий в различных пропорциях. Все эти металлы безопасны и лишены токсичных компонентов, так что по этому критерию не уступает стандартной термопасте.

Плюсы и минусы использования жидкого металла

Положительные стороны

  • Основным достоинством жидкого металла является замечательная теплопроводность в 7 – 8 раз превышающая обычные термопасты.
  • Огромный температурный диапазон использования от -273 C до +1200 C.
  • Не имеет токсичных элементов.

Отрицательные стороны

  • Электропроводность – нанося ЖМ (жидкий металл) нужно быть крайне осторожным, так как любое попадание этого термоинтерфеса на открытые контакты, может вызвать замыкание и привести к полной или частичной неисправности устройства.
  • Несовместимость с алюминием и медью. Жидкий металл вступает в реакцию с этими металлами вызывая коррозию поверхности, что приводит к уменьшению теплопроводности и ведёт к полной замене радиатора охлаждения.
  • Сложностьнанесения – требуется идеально чистая, обезжиренная поверхность иначе придётся изрядно, повозится с нанесением.
  • Сложность в снятии – достаточно сложная процедура очистки поверхностей от остатков отработанного жидкого металла.

В каких случаях стоит применять жидкий металл

По причине того, что ЖМ вступает в реакцию с алюминием и медью его не выйдет использовать с дешёвыми системами охлаждения. А брать дорогие медные радиаторы с никелированным покрытием которое подойдёт для ЖМ нецелесообразно, потому как такая система охлаждения и без жидкого металла замечательно справляется с охлаждением на обычной термопасте.

Но это не означает что жидкий металл бесполезен для ПК. Он замечательно подойдёт оверклокерам, или как замена стандартного термоинтерфейса под крышкой процессора посредством скальпирования. Ещё он отлично подходит для ноутбуков т.к. процессоры не имеют защитных крышек. Но придётся позаботиться о наличии никелированного покрытия на радиаторе системы охлаждения и нанесении изоляционного покрытия по периметру текстолита, вокруг процессорного разъёма, где находятся оголённые контакты.

Что из себя представляет термопаста

Этот тип термоинтерфейса в особом представлении не нуждается т.к. широко распространён и используется практически в каждом ПК.

В состав термопасты входят различные виды теплопроводящих компонентов в виде микро/нанодисперсных порошков и их смесей: графит, серебро, вольфрам медь и т.д. В качестве основы (загуститель) применяют жидкости с низким уровнем испаряемости синтетического или минерального происхождения.

Основные отличия от жидкого металла

  • Самое главное отличие — это, пожалуй, универсальность в использовании т.к. термопаста не вступает в реакцию с металлами её можно использовать на любых типах поверхности.
  • Легче наносится, а самое главное безопаснее, потому как не является электропроводником, что сводит на нет шансы на короткое замыкание.
  • Огромный ассортимент с сотнями наименований и характеристик на любой вкус и бюджет, которые можно с лёгкостью приобрести в интернет-магазине SteelSmart.

Выводы

Подводя итог можно сделать вывод, что жидкий металл хоть и является лучшим проводником чем термопаста, но имеет множество неприятных нюансов. На деле, замена хорошей термопасты на ЖМ при обычных условиях без скальпирования, позволяет выиграть всего пару градусов и вряд ли является целесообразным решением. Но всё же, если вы решитесь поменять термопасту в ноутбуке на жидкий металл, то лучше доверьте это профессионалам сервисного центра SteelSmart, чтобы минимизировать риски, и исключить появление нежелательных последствий.

Источник

Что лучше термопаста или жидкий металл для процессора

В последнее время все большую популярность приобретает применение в компьютерной технике в качестве термоинтерфейса жидкого металла.

Но давайте разберемся, все ли так хорошо, как нас убеждает производитель этого «волшебного зелья» и его фанаты.

Да! Несомненно у жидкого металла есть большой плюс, это его теплопроводность, она выше, чем у хорошей термопасты в 7-10 раз. И на практике применение жидкого металла позволяет в некоторых случаях снизить температуру чипа до 20%.

Для наглядности показатели теплопроводности для термопаст и жидкого металла привел в таблице.

Но на этом все. Дальше одно разочарование. Все по порядку.

Жидкий металл состоит (является сплавом) из трех основных элементов: галлий-индий-олово (62, 25 и 13% соответственно), с некоторыми небольшими дополнительными присадками в зависимости от «волшебных рецептов» разных производителей с температурой плавления в районе 5 °С.

Взаимодействие с алюминием даже не будем рассматривать, так как сам производитель категорически запрещает применять жидкий металл на алюминиевых поверхностях, к слову алюминий при взаимодействии с жидким металлом разрушается прямо на глазах. А рассмотрим взаимодействие с медью, с которым производитель как раз и рекомендует использовать жидкий металл, и поверхностью кристаллов чипов.

Для начала взглянем на поверхность медного радиатора после его интенсивного использования с жидким металлом в течении полугода.

Жидкий металл перешел в твердое состояние, снятие его было произведено с усилием, так как он «прикипел» к поверхности кристалла.

Так что же произошло с жидким металлом?

Химики на этот вопрос отвечают, что жидкий металл в процессе диффузии будет впитываться в медь, образуя на границе между металлами корку интерметаллидов. Последние не являются металлами с физической точки зрения, они тугоплавки, хрупки и обладают плохой тепло — и электропроводностью, но главное — жидкий металл будет расходоваться на их образование и просто уйдет из зазора.

Все таки разрушающая химическая реакция с медью происходит, пусть и достаточно медленно, по причине которой значительно снижается теплопроводность этого термоинтерфейса и увеличиваются температуры чипов.

Химики так же говорят, что устранить подобное явление поможет никелирование меди, но не все медные радиаторы имеют никелированную поверхность.

Теперь разберемся как влияет жидкий металл на поверхность кристаллов чипов. На фото представлено фото поверхности кристалла процессора, который несколько лет эксплуатировался с жидким металлом.

Как видно и здесь происходят химические реакции, которые постепенно разрушают поверхность кристалла чипа.

Читайте также:  Elitegroup PM800 M2 компактное решение для домашнего видео

Кстати разрушающее воздействие жидкого металла касается еще и паяных соединений, вступив в контакт с припоем, он сделает его хрупким, а пайку ненадежной, и в какой-то момент это сработает.

Представьте такую ситуацию: вы в ноутбуке заменили термоинтерфейс на жидкий металл, выдавили его немного больше, чем нужно было. При установке системы охлаждения излишек выдавился из-под процессора, или графического чипа, и волшебная капелька зависла в ожидании какого ни будь резкого толчка или небольшого падения (с высоты 2 см.) вашего ноутбука. А такие случаи имели место быть. И здесь начинается путешествие это волшебной капли по вашему ноутбуку. И что случится раньше? Замкнет SMD компоненты на подложке процессора, замкнет, какие-либо другие компоненты, или же просто прилипнет к какому-нибудь месту пайки и через некоторое время разрушит ее.

Поэтому лично я бы держал жидкий металл как можно дальше от любой электроники.

Источник

Что лучше использовать термопасту или жидкий металл

Термоинтерфейс используется в любом современном стационарном компьютере или ноутбуке. Его задача заключается в улучшении передачи тепла от чипа к системе охлаждения (кулеру). Материал заполняет микроскопические полости между радиатором и теплораспределительной крышкой процессора или самим кристаллом (если крышка отсутствует).

Термопаста

Термопаста – традиционный тип термоинтерфейса, использующийся в системах охлаждения процессоров и прочих микрочипов. Наносится между процессором и радиатором охлаждения. Используется не только для охлаждения центрального процессора, присутствует и в видеокартах. Отвечает за удаление воздуха и заполнение полостей с целью улучшения теплоотвода.

Основная характеристика любой термопасты – теплопроводность. Чем выше значение данного параметра, тем эффективнее тепло отводится от микропроцессора. Показатель может варьироваться от 0,5 до 8,5 Вт/мК. Некоторые модели паст имеют и более высокую теплопроводность.

Для компьютеров рекомендуется использовать термопасту с теплопроводностью не менее 4 Вт/мК. Чем выше значение, тем эффективнее работает термоинтерфейс. На данный момент одной из лучших паст считается серия MX-4 от Arctic Cooling.

Особенно важно использовать максимально качественный термоинтерфейс в ноутбуках и других портативных устройствах. Как правило, они оснащаются не самыми производительными системами охлаждения (из-за компактности), поэтому эффективность термоинтерфейса играет важную роль.

Важной особенностью и преимуществом термопасты является то, что она не проводит электроток. Это исключает риск выхода из строя устройства в случае попадания состава на электронную обвязку чипа. Однако некоторые модели имеют в составе частицы серебра для улучшения теплопроводности, вследствие чего проводят ток. Пользоваться такими термопастами нужно особенно осторожно.

Жидкий металл

ЖМ стал современной альтернативой классическому термоинтерфейсу. Обладает более высокими эксплуатационными характеристиками в сравнении с привычными термопастами. Имеет следующие основные преимущества:

  1. Высокая теплопроводность – порядка 80 Вт/мК. По данному параметру в 9-10 раз превосходит термопасту.
  2. Незначительная вязкость.
  3. Однородная консистенция.
  4. Длительный срок службы.
  5. Маленький расход.

Такие составы ориентированы прежде всего на «оверклокеров», пользователей, предпочитающих максимально возможный «разгон» процессора. Разгон предполагает повышение тактовой частоты, для чего зачастую требуется увеличение напряжения, что обычно приводит к высокому нагреву. Соответственно эффективность термоинтерфейса является одним из важных факторов для успешного разгона.

Жидкий металл лучше всего проводит тепло, поэтому его часто применяют в системах с экстремальным разгоном и без того высокопроизводительного оборудования. Но, он отличается несколькими существенными минусами:

  • Сложность нанесения. Материал нужно наносить на идеально отполированную и обезжиренную поверхность. Наносится лёгкими втирающими движениями с помощью ватного аппликатора.
  • Трудность удаления. Зачастую без применения специальных чистящих средств очистить радиатор и процессор от жидкометаллического термоинтерфейса невозможно.
  • Вступает в реакцию с алюминием, вследствие чего последний начинает разрушаться. Это чревато выходом из строя радиатора системы охлаждения. ЖМ не должен контактировать с чистым алюминием. Поэтому нужно использовать радиаторы с никелированной поверхностью, прижимающейся к чипу.
  • Высокая электропроводность.

Жидкометаллические составы очень хорошо проводят электричество. При попадании на обвязку чипа или компоненты материнской платы происходит короткое замыкание, что чревато выходом из строя многих комплектующих.

Общие и отличительные особенности

Оба вида термоинтерфейса имеют жидкую пастообразную консистенцию. Однако некоторые производители предлагают жидкий металл в твёрдом виде. Такой материал продаётся в форме тонких пластинок, которые прокладываются между микропроцессором и кулером, и приобретают жидкую форму при достижении определённой температуры, обычно +50°С.

Жидкий металл и термопаста имеют одинаковое назначение – улучшение теплопроводности между чипом и радиатором. Оба материала нужно наносить очень тонким слоем. Задача термоинтерфейса – только заполнить мельчайшие полости. Его не должно быть много, в противном случае эффективность системы охлаждения ухудшиться.

Для сравнения термоинтерфейсов следует ориентироваться на такие основные критерии:

  • Теплопроводность.
  • Срок службы.
  • Электропроводность.
  • Стоимость.
  • Безопасность.

По теплопроводности значительно выигрывает жидкий металл. Но, эффект заметен только при использовании дорогих систем охлаждения, в том числе жидкостных, с высокой рассеивающей способностью. Нанесение ЖМ под недорогой радиатор с 1-2 тепловыми трубками или вовсе без них не даст заметного результата.

Качественные термопасты сохраняют свои свойства в среднем в течение 1 года, после чего нуждаются в замене, поскольку отвердевают и начинают плохо проводить тепло. Некоторые модели способны служить порядка 3 лет. Жидкий металл значительно дольше сохраняет эффективность.

Большинство термопаст не проводят электричество, поэтому не влекут риска выхода из строя компьютерных комплектующих. Жидкий металл может привести к поломке, поскольку является токопроводящим материалом.

Стоимость даже самого дешёвого жидкометаллического состава может в несколько раз превосходить цену довольно качественной термопасты. Поэтому его использование с дешёвыми комплектующими нецелесообразно.

Какой термоинтерфейс выбрать в разных случаях?

Если предполагается использование обычного радиатора с алюминиевой контактирующей поверхностью, нельзя применять жидкий металл. Он не даст значительного снижения температуры, но постепенно испортит радиатор. Если компьютер работает в штатном режиме, применение жидкого металла нецелесообразно, даже при условии установки высокоэффективной системы охлаждения.

Жидкий металл актуален прежде всего для пользователей, занимающихся разгоном процессоров. Его высокая теплопроводность позволит значительно снизить температуру чипа после повышения частоты и напряжения, но при условии применения эффективного кулера или жидкостной системы охлаждения.

Жидкометаллический термоинтерфейс можно применять в ноутбуках. Процессоры таких устройств не имеют теплораспределительной крышки. Радиатор контактирует непосредственно с кристаллом, а ЖМ заполняет полости, благодаря чему удаётся добиться значительного снижения температуры.

Также применение жидкого металла актуально для охлаждения скальпированных процессоров. Скальпирование предполагает снятие теплораспределительной крышки, чтобы радиатор прижимался напрямую к кристаллу, по аналогии с ноутбуками.

Перед нанесением ЖМ рекомендуется покрыть поверхность вокруг кристалла (детали на подложке) дополнительным защитным материалом, к примеру, специальным лаком. Это предотвратит замыкание компонентов платы. В остальных случаях лучше воспользоваться обычной термопастой.

Источник



Как выбрать термопасту, и что это вам даст?

Термоинтерфейс в охлаждении комплектующих ПК и другой электроники играет не меньшую, а порой даже и большую роль, нежели тип, размеры и конструктивные особенности самой системы охлаждения. Использование некачественного термоинтерфейса может свести на нет все усилия по снижению температур (характерный и ярчайший пример — центральные процессоры, в которых термопаста находится не только НА крышке теплораспределителя, но и непосредственно ПОД ней).

Но и обратное тоже верно: эффективный термоинтерфейс способен «сбить» температуру охлаждаемого элемента, отыграв от одного-двух до доброго десятка градусов, что продлит срок службы устройства, исключит возможные сбои из-за перегрева и снизит шум, издаваемый системой охлаждения.

Читайте также:  Диск загружен на 100 процентов в диспетчере задач Windows 10

Именно поэтому экономить на термоинтерфейсе, равно как и подходить к его выбору по принципу «беру первое, что попалось» не стоит. Термопаста — далеко не самый дорогостоящий товар, но от неё зависит жизнеспособность гораздо более важных компонентов.

На что нужно обращать внимание при выборе?

Тип термоинтерфейса

В каталоге ДНС, помимо традиционных пластичных термоинтерфейсов, представлены и другие разновидности, имеющие своё назначение и свою специфику применения. Прежде, чем выбирать конкретный состав, следует определиться с тем, что именно вы собираетесь охлаждать, и каким способом.

Жидкий металл. Может быть представлен как в непосредственно жидком виде, так и в форме прокладок, которые перед применением необходимо прогреть и расплавить между системой охлаждения и охлаждаемым элементом. В обоих случаях этот вид термоинтерфейса обладает наилучшей теплопроводностью, а также прекрасно чувствует себя при околонулевых и минусовых температурах, что делает его превосходным вариантом для экстремального разгона.

Минусы жидкого металла заключаются не только в его высокой стоимости. Прежде всего — это крайне агрессивный состав — к примеру, ЖМ нельзя использовать с алюминиевыми кулерами, так как алюминий под его воздействием самым натуральным образом растворяется. По той же причине ЖМ может запросто привести в негодный вид крышку процессора, что лишит владельца ЦПУ гарантии. Кроме того, жидкий металл токопроводен, и использование его на кристаллах без теплораспределительной крышки — к примеру, на графических чипах видеокарт — не рекомендуется.

Термопрокладки. Пластичный и универсальный термоинтерфейс, предназначенный для охлаждения тех узлов, где не требуется чересчур высокая эффективность. В отличие от жидкого металла, является электроизолятором, что позволяет без лишней дотошности накрывать прокладкой как охлаждаемый элемент, так и окружающее его пространство платы. Характерный пример — охлаждение VRM видеокарт и материнских плат, оснащённых соответствующим радиатором.

Основное преимущество термопрокладки — это её эластичность и способность заполнять любые пустоты, сохраняя при этом возможность проводить тепло. Это свойство крайне важно, если охлаждаемые элементы находятся на разной высоте — например, чипы памяти видеокарты относительно графического чипа — или имеют сложный рельеф.

А вот использовать термопрокладки на ЦПУ или ГПУ нельзя — их эффективность слишком мала, чтобы обеспечить этим узлам должное охлаждение.

Термопаста как она есть — состав практически универсальный. Она не столь эффективно проводит тепло, как жидкий металл, и для эффективной теплопередачи требует минимального зазора между охлаждаемым элементом и системой охлаждения. Но при этом — не проводит ток (исключение здесь — пасты с частицами металла) и многократно превосходит термопрокладки по эффективности.

Соответственно, термопаста в её традиционном понимании может использоваться практически где угодно. Вопрос остаётся лишь в выборе интерфейса с походящими характеристиками.

Термоклей отличается от термопасты тем, что сохраняет пластичность только ограниченное время после нанесения на поверхность. Впоследствии клей схватывается и образует крайне прочное соединение, способное удержать вес радиатора или другого элемента без дополнительной фиксации. Вследствие этого термоклей идеально подходит, например, для фиксации радиаторов VRM материнских плат и видеокарт, где изначально не предусмотрено винтовое крепление соответствующих элементов.

Минус термоклея вполне очевиден: прочность фиксации не позволяет легко демонтировать радиатор с охлаждаемого элемента. Более того: в процессе снятия есть немалый риск оторвать элемент с платы. Поэтому использовать термоклей для ЦПУ и графических процессоров также не рекомендуется.

Эффективность

К сожалению, самый важный параметр термоинтерфейса нельзя найти ни в каталогах магазинов, ни на сайтах компаний-производителей. Некоторые, конечно, склонны связывать эффективность термоинтерфейса с таким параметром, как теплопроводность — её-то как раз указывают все производители.

Тем не менее, на деле это не совсем так. Как показывают тесты на реальном железе, далеко не всегда паста с большей паспортной теплопроводностью оказывается более эффективной, нежели паста с меньшей теплопроводностью. Зачастую полутора- и даже двукратная разница в паспортных параметрах в итоге выливается в практически одинаковые результаты по температурам.

Выбирать термопасту необходимо по одному критерию: результатам, которые она демонстрирует в профессиональных обзорах от авторитетных изданий. Как правило, там обеспечивается и единообразие условий тестирования, и грамотная методика проведения тестов, что позволяет называть полученные результаты достоверными.

Имея на руках базу результатов, продемонстрированных разными пастами на одном железе в одинаковых условиях, можно будет сделать аргументированный и рациональный выбор. К примеру, если некий центральный процессор при использовании пасты А разогрелся только до 84 градусов, а с пастой B — до целых 96 градусов — сразу понятно, кто здесь лучше. Если же при использовании паст A, B и C температура одинакова, но цена и отпускаемый объём паст серьёзно различаются — выбирайте наиболее выгодный вариант.

Упаковка

Как ни парадоксально, но да — это тоже очень важный момент. Как правило, термопаста (и другие интерфейсы) продаются в большем объёме, нежели нужно для разового применения. Это удобно, если вы не хотите ходить в магазин при каждой смене процессорного кулера или чистке ноутбука, но автоматически ставится вопрос хранения термоинтерфейса.

В пакетиках предлагается либо термопаста в малых объёмах (1 грамм), либо термопрокладки. В обоих случаях это не самый удобный вариант — остатки термопасты «на свежем воздухе» быстро засохнут, а с термопрокладок испарится пропитка. Следовательно, приобретая такую упаковку, следует сразу же просчитать нужное вам количество термоинтерфейса, либо позаботиться о его хранении.

Банки, бутылки и тюбики — более надёжный вариант, термопаста в таких упаковках может сохранять свои свойства буквально годами, не засыхая и не разлагаясь на составляющие. Единственный минус такой упаковки — не слишком удобная дозировка и нанесение.

Шприц — идеальный, а потому и самый распространённый вариант. Он герметичен, но кроме того — крайне удобен при дозировке и нанесении пасты на охлаждаемую поверхность.

Объём термопасты и количество термопрокладок

Также немаловажный фактор, поскольку от него зависит итоговая цена покупки и вопросы дальнейшего хранения термоинтерфейса. Так, если вам просто нужно провести разовую профилактику своего ПК, ноутбука или другого устройства — 1-2 грамм термопасты и одной термопрокладки для этого вполне достаточно. Лучше будет даже приобрести меньшее количество термоинтерфейса, но выбрать состав, обладающий лучшими характеристиками.

И не стоит убеждать себя, что вы берёте термоинтерфейс «про запас». Во-первых, когда этот самый «запас» вам понадобится — купленная загодя паста может уже засохнуть от неправильного хранения. Во-вторых, вовсе не факт что к тому времени вы не смените железо на новое, которому, ввиду новизны, обслуживание попросту не нужно.

Обратная ситуация: если у вас домашний сервис по ремонту электроники, либо вы обслуживаете устройства, по своим размерам и количеству греющихся элементов сильно отличающиеся от ноутбуков и ПК — лучше закупиться сразу большими объёмами. Лишний поход в магазин в разгар ремонта может сбить все сроки, а уж если термоинтерфейс закончится в разгар профилактики на удалённом объекте, где магазинов в принципе нет — последствия будут куда более яркими и впечатляющими.

Читайте также:  Райзен 3 поколения какие процессоры

Минимальная и максимальная рабочая температура

Владельцам рядового «домашнего» железа, разумеется, переживать об этих параметрах не стоит. Минусовых температур обычный домашний ПК или ноутбук с вероятностью в 99% не увидят, да и продолжительный нагрев выше 100 градусов обычно означает то, что идти в магазин придётся отнюдь не за новой термопастой.

А вот фанатам экстремального оверклокинга стоит обратить внимание на минимальную температуру, при которой термоинтерфейс сохраняет свои свойства. Большинство термопаст при температурах ниже нуля промерзают насквозь и перестают выполнять свои задачи, что грозит, как минимум, потерей запланированного рекорда. Так что паспортные -80 или -100 — для систем охлаждения на базе фреона, и — 200 градусов — для жидкого азота просто обязательны.

Впрочем, на минимальную рабочую температуру термоинтерфейса стоит обращать внимание и инженерам, обслуживающим различную электронику, работающую «на свежем воздухе». Живём мы всё-таки в северной стране, и -40 зимой — не редкость даже для средней полосы, не то что для Заполярья. Сэкономить на термоинтерфейсе, конечно, можно, но ведь кому-то потом придётся делать внеплановый профилактический ремонт в не самых лучших погодных условиях.

Максимальная рабочая температура — параметр, важный в том случае, если паста наносится на элемент, не имеющий отношения к ПК и тому подобной электронике. К примеру, температура мощного светодиода, охлаждаемого радиатором, легко может уходить за 150 градусов, а у хорошо нагруженного транзистора — и за 200 градусов. И вовсе неплохо иметь термопасту, которая в таких условиях не засохнет и не превратится в камень в течение всего паспортного срока службы.

Критерии и варианты выбора

Термоинтерфейсы, предлагаемые в магазинах сети ДНС/Технопоинт, можно рассортировать следующим образом:

Жидкие металлы и пасты с повышенным содержанием металлов подойдут любителям экстремального разгона, борющимся за каждый градус и мегагерц. Использовать такие интерфейсы необходимо с большой осторожностью, однако при правильном применении они дают превосходные результаты.

Термопрокладки (за исключением металлических вариантов!) необходимы для охлаждения таких элементов ПК, как цепи питания видеокарт и материнских плат, чипы памяти (причём как на видеокартах, так и на модулях оперативной памяти, оснащённых радиаторами) и жёсткие диски. Кроме того, они найдут своё применение везде, где требуется охлаждать элементы сложной формы и рельефа, но не нужна слишком высокая эффективность охлаждения.

Термоклей пригодится в том случае, если предполагается установить радиатор на элемент, для которого не предусмотрено общего радиатора, а на плате нет монтажных отверстий, позволяющих винтовое крепление. Прочность термоклея достаточна, чтобы удерживать радиатор (или наоборот — охлаждаемый элемент на радиаторе) без дополнительной фиксации.

Ассортимент термопаст в ДНС включает в себя теплопроводные составы различных типов и видов: от бюджетных термопаст, не обладающих большой эффективностью, но поставляемых в больших объёмах, до топовых составов, демонстрирующих сверхвысокую эффективность, и способных работать в условиях низких температур. Есть, разумеется, и «универсальные» варианты, одновременно доступные по цене и показывающие пусть не рекордные, но очень неплохие результаты.

Источник

9 Мифов о термопасте

Миф №1. Термопасту нужно наносить на крышку процессора обязательно крестиком, кружком или звездочкой (нужное подчеркнуть, ненужное вычеркнуть).

Цель термопасты — эффективно передать тепло от горячего процессора или видеочипа к радиатору кулера, чтобы тот его рассеял. При этом теплопроводные свойства термопасты ощутимо меньше, чем у большинства металлов, но все же гораздо выше, чем у воздуха. Отсюда вытекает простой вывод: наносить термопасту нужно тонким ровным слоем без пустот.

Очевидно, что всякие художества на крышке процессора этого могут и не обеспечить: например, банальная капля в центре может оставить края CPU неприкрытыми, потенциально уменьшая площадь, с которой может забираться тепло, и тем самым увеличивая температуру камня. Про всякие кружочки, квадратики и прочие произведения искусства и говорить нечего — могут получиться пустоты вообще в центре крышки, а вы будете долго гадать, почему ваш процессор под мощной башней с дорогой термопастой греется до 100 градусов.

Так что если вы хотите избежать проблем с этим — найдите ненужную кредитку или другую пластиковую карту, и аккуратно размажьте термопасту тонким слоем по всей крышке. Долго, скажете вы? Ну, зато точно не придется вновь разбирать ПК из-за перегрева, дабы уже нормально нанести хладомазь.

Миф №2. Дорогая термопаста позволит сэкономить на кулере

Как я уже писал, цель термопасты — это эффективно передать тепло от крышки CPU радиатору кулера. Да, разумеется дорогие термопасты с более высокой теплопроводностью будут делать это лучше, но они никак не помогут охладить горячий камень, если не справляется сам кулер, так как именно последний отвечает за охлаждение.

Поэтому увы, но Arctic MX4 не поможет боксовому кулеру охладить Core i9 — сей кусок алюминия быстро нагреется и процессор начнет троттлить. Поэтому в любом случае берите охлаждение, максимальный уровень рассеиваемого тепла которого выше TDP вашего процессора.

Миф №3. Термопасты — это мировой заговор: что у процессора, что у радиатора контактные поверхности гладкие, так что хладомазь не нужна.

Гладкие они только для наших глаз, а вот под микроскопом они будут похожи на типичную российскую дорогу, всю в колдобинах и ямах. Поэтому если не использовать термопасту, то площадь контакта подошвы кулера и крышки процессора будет ощутимо меньше последней, а в пустотах между ними будет скапливаться воздух с очень низкой теплопроводностью. Термопаста для того и нужна, чтобы заполнить собой эти полости, ведь она передает тепло куда лучше, чем воздух.

Разумеется, если у вас стоит какой-нибудь Celeron под мощным суперкулером, то скорее всего даже небольшой площади контакта действительно хватит, чтобы охладить процессор. Но если мы берем реальные системы, то термопаста нужна в обязательном порядке — в противном случае вы рискуете получить под 100 градусов на CPU даже на рабочем столе.

Миф №4. Дорогие термопасты не нужны, я всю жизнь мажу КПТ-8 и проблем не знаю.

Все очень сильно зависит от процессора. Если у вас простой чип с 2-4 ядрами и низкими частотами, то поток тепла через крышку будет низок, и даже различные графитовые смазки вполне справятся с поставленной задачей. Но если мы берем различные Core i9 или Ryzen 9, которые имеют реальные TDP под нагрузкой нередко больше 200 Вт, неэффективная термопаста просто не сможет передать такой поток тепла с крышки на радиатор, из-за чего CPU будет греться больше.
Вот и получается, что в случае с дешевыми кулерами дорогая высокоэффективная термопаста не поможет, а в случае с мощными системами охлаждения дешевая термопаста все испортит. Насколько сильно? Разница может составлять до 4-5 градусов. Конечно, в играх это не критично, но например в рабочих задачах процессоры нередко могут греться до 90 градусов, и тут такая разница может быть фатальной.

Так что если учесть, что разница между граммовыми шприцами с дешевой и дорогой термопастами нередко составляет всего несколько сотен рублей, при сборке дорогого ПК уж точно не стоит экономить на хладомази.

Источник