Реальная максимальная скорость wifi

Хитрости измерений скорости Wi-Fi

Скорость – определяющий фактор для выживания в африканской саванне и каменных джунглях мегаполисов. Быстрее, выше, сильнее – в унисон твердят маркетологи, презентуя очередной Wi-Fi-маршрутизатор. Какие реальные цифры скрываются за красивыми лозунгами? Зачем роутеру 3, 4, 8 антенн? Ответы на эти и другие вопросы читайте ниже.

О скорости замолвим слово

Стандарт связи 2G канул в лету, 3G едва трепыхается на дедушкиной Nokia, эпоха 4G катится к закату – это факт. Для обеспечения высокой скорости передачи данных на смартфонах, планшетах, ноутбуках требуется более продвинутая технология. На смену 802.11n (Wi-Fi 4), пришла 802.11 AC (Wi-Fi 5). Устаревший стандарт позволяет передавать информацию со скоростью до 600 мегабит в секунду, а Wi-Fi 5 до 6,77 гигабит в секунду – в 11,28 быстрее!

Зачем маршрутизатору много антенн?

Все как в природе – однорогие олени не конкуренты собратьям. 802.11ac бывают с двумя-четырьмя рогами, особо зверские мутанты – с восьмью. Две антенны используются для фокусировки сигнала в одну точку, позволяя ему лучше пробивать стены. Три антенны – бюджетный вариант, две – фокусируют сигнал, дополнительная попеременно работает на прием и передачу. Четыре антенны – позволяют раздавать интернет в два потока нескольким устройствам.

Что в коробке?

Современный Wi-Fi маршрутизатор – полноценный компьютер, у него есть 1-2 ядерный процессор, флэш-память, ОЗУ, радиомодуль, 1-2 порта Gigabit Ethernet и ПО, от которого зависит работа железа и метод передачи пакетов информации.

Скупаем рога, дорого

Роутер с единственной антенной работает попеременно на прием или передачу, потолок для 802.11n – 150 мегабит в оба конца. Большое количество антенн позволяет стабилизировать сигнал, направив его по узкому коридору. Кроме количества, важно качество. Одна дорогая антенна может по мощности заменить две дешевые. При покупке надо обращать внимание на характеристики устройства. Роутеры стандарта Wi-Fi 5 стоят дорого из-за начинки, их стоит брать для просмотра потокового видео и онлайн-игр. Для старого потрепанного ноутбука и не флагманского смартфона, вполне подойдет однорогая особь.

Как не попасть мимо с MIMO?

MIMO – технология, основанная на алгоритме конечных полей, обеспечивающая передачу потоков данных на несколько гаджетов одновременно. Пакеты данных дробятся параллельно и рассылаются с помощью антенн по всем доступным частотам. Для одного клиента может быть обработано до 4 потоков одновременно. Максимум 16 потоков для четырех устройств, например, телевизор, ноутбук, планшет, смартфон. Технология используется во всех современных маршрутизаторах. Чтобы вся мощь маршрутизатора «пошла на мимо», гаджет должен обладать минимум двумя антеннами. К слову, подавляющее большинство мобильных гаджетов оснащены только одним приёмником Wi-Fi и одной антенной.

Где мой Гигабит?

«Почему купленный в магазине резвый арабский скакун, дома превращается в дохлого ишака. Где заявленная скорость и мощь?» – удивляется покупатель. Надувательство, развод, глобальный заговор масонов!

Нет. Красивые цифры указывают на стандарт и тесты в лаборатории. В домашних условиях получаются совсем другие результаты. Максимальная пропускная способность у 802.11n – 346 мегабит на один канал, у 802.11ac ширина канала до 433 мегабит в секунду. Реальная и канальная скорость маршрутизатора значительно отличаются. Передача данных происходит пакетами с дополнительной нагрузкой в виде: адреса клиента и информации о размере пакета данных, контрольной суммы, позиционирования точки в пространстве.

Путешествие сигнала туда и обратно

Скорость между двумя устройствами всегда минимум в два раза меньше, заявленной производителем, потому что пакеты проходят маршрут туда и обратно – этот процесс называется однопотоковой коммуникацией или «симплекс». Передача данных в два потока – «дуплекс». В роутерах с 1-3 антеннами используется эмуляция дуплекса, полудуплексная система работает путем чередования процессов приема-передачи.

Если у устройства четыре антенны – две на прием и две на отправку, скорость возрастет, но она никогда не будет равна той, что написана на коробке.

Дополнительные факторы, снижающие скорость:

  • Дешевый или устаревший передатчик в смартфоне, планшете, ноутбуке;
  • Помехи от других устройств – соседние маршрутизаторы;
  • Дислокация роутера – зона покрытия даже у самых дорогих моделей снижается рядом с бытовыми приборами и большим количеством металла.
  • Направленность антенн – две антенны должны стоять строго вертикально;
  • Скорость интернет-канала – зависит от провайдера и тарифного пакета.

Как узнать скорость своей Wi-Fi?

Очень просто! Достаточно просто измерить ее с помощью проверенных, авторитетных и давно себя зарекомендовавших сайтов.

Источник

Сайт технической поддержки
для клиентов фиксированной связи

Реальная скорость соединения, используемая в технологии Wi-Fi

300 Мбит/с — максимальная скорость работы на физическом уровне по стандарту IEEE 802.11n при соединении с адаптерами, использующими два пространственных потока и канал 40 МГц для приема и передачи. Действительная скорость передачи данных в беспроводной сети зависит от особенностей и настроек клиентского оборудования, числа клиентов в сети, препятствий на пути прохождения сигнала, а также наличия других беспроводных сетей и радиопомех в том же диапазоне.

150 Мбит/с — максимальная скорость работы на физическом уровне по стандарту IEEE 802.11n при соединении с адаптерами, использующими один пространственный поток и канал 40 МГц для приема и передачи.

Начнем с того, что многие пользователи неверно ориентируются на скорость подключения в мегабитах в секунду (Мбит/с), которое отображается в строке Скорость (Speed) на закладке Общие (General) в окне Состояние (Status) беспроводного соединения в операционной системе Windows.

Пользователи ошибочно думают, что это значение показывает реальную пропускную способность конкретного сетевого соединения. Данная цифра отображается драйвером беспроводного адаптера и показывает, какая скорость подключения на физическом уровне используется в настоящее время в рамках выбранного стандарта, то есть операционная система сообщает лишь о текущей (мгновенной) физической скорости подключения 300 Мбит/c, но реальная пропускная способность соединения при передаче данных может быть в диапазоне от 50 до 140 Мбит/с, в зависимости от настроек точки доступа с поддержкой 802.11n, числа одновременно подключенных к ней клиентских беспроводных адаптеров и других факторов.
Разница между скоростью подключения, которая отображается в Windows, и реальными показателями объясняется прежде всего большим объемом служебных данных, потерями сетевых пакетов в беспроводной среде и затратами на повторную передачу.

Чтобы получить более или менее достоверное значение реальной скорости передачи данных в беспроводной сети, можно использовать один из указанных ниже способов:

Обращаем ваше внимание на следующее:
В технических спецификациях устройств указывается скорость соединения в Мегабитах в секунду (Мбит/с), а в пользовательских программах (интернет-браузеры, менеджеры загрузки, p2p-клиенты) скорость передачи данных при скачивании файлов (скорость закачки) отображается в Килобайтах или Мегабайтах в секунду (КБ/с, Кбайт/с или МБ/с, Мбайт/с). Эти величины часто путают.
Для перевода Мегабайтов в Мегабиты, необходимо умножить значение в Мегабайтах на 8. Например, если интернет-браузер показывает скорость при скачивании файлов 4 Мбайт/с, то для перевода в Мегабиты нужно умножить это значение на 8: 4 Мбайт/с * 8 = 32 Мбит/с .
Для перевода из Мегабит в Мегабайты необходимо разделить значение в Мегабитах на 8.

Но вернемся к скорости подключения по Wi-Fi.

В реальных условиях пропускная способность и площадь покрытия беспроводной сети зависят от помех, создаваемых другими устройствами, наличия препятствий и прочих факторов. Рекомендуем вам ознакомиться со статьей : «Что влияет на работу беспроводных сетей Wi-Fi? Что может являться источником помех и каковы их возможные причины?»

Как мы писали выше, в операционной системе Windows, а также в утилитах, поставляемых вместе с беспроводным адаптером, при подключении отображается не реальная скорость передачи данных, а теоретическая скорость. Реальная скорость передачи данных оказывается примерно в 3 раза ниже, чем та, которая указана в спецификациях к устройству.
Дело в том, что в каждый момент времени точка доступа (интернет-центр с активной точкой доступа) работает только с одним клиентским Wi-Fi-адаптером из всей Wi-Fi-сети. Передача данных происходит в полудуплексном режиме, т.е. по очереди — от точки доступа к клиентскому адаптеру, затем наоборот и так далее. Одновременный, параллельный процесс передачи данных (дуплекс) в технологии Wi-Fi невозможен.
Если в Wi-Fi-сети два клиента, то точке доступа нужно будет коммутировать в два раза чаще, чем если бы клиент был один, т.к. в технологии Wi-Fi используется полудуплексная передача данных. Соответственно, реальная скорость передачи данных между двумя адаптерами будет в два раза ниже, чем максимальная реальная скорость для одного клиента (речь идет о передаче данных от одного компьютера другому через точку доступа по Wi-Fi-соединению).

Читайте также:  Best Wi Fi extenders of 2021 top devices for boosting your WiFi network

В зависимости от удаленности клиента Wi-Fi-сети от точки доступа или от наличия различных помех и препятствий будет изменяться теоретическая и, как следствие, реальная скорость передачи данных. Совместно с беспроводными адаптерами точка доступа изменяет параметры сигнала в зависимости от условий в радиоэфире (расстояние, наличие препятствий и помех, зашумленности радиоэфира и прочих факторов).

Приведем пример. Скорость передачи между двумя ноутбуками, соединенными напрямую по Wi-Fi составляет

10 Мбайт/с (один из адаптеров работает в режиме точки доступа, а другой в режиме клиента), а скорость передачи данных между теми же ноутбуками, но подключенными через интернет-центр Keenetic, составляет

4 Мбайт/с. Так и должно быть. Скорость между двумя устройствами, подключенными через точку доступа по Wi-Fi, всегда будет как минимум в 2 раза меньше, чем скорость между теми же устройствами, подключенными друг к другу напрямую, т.к. полоса частот одна и адаптеры смогут общаться с точкой доступа только поочередно.

Рассмотрим другой пример, когда беспроводная Wi-Fi-сеть создана в интернет-центре Keenetic Lite с поддержкой стандарта IEEE 802.11n с возможной теоретической максимальной скоростью до 150 Мбит/с. К интернет-центру подключен ноутбук с Wi-Fi-адаптером стандарта IEEE 802.11n (300 Мбит/с) и стационарный компьютер с Wi-Fi-адаптером стандарта IEEE 802.11g (54 Мбит/с).
В данном примере вся сеть имеет максимальную теоретическую скорость 150 Мбит/с, т.к. она построена на интернет-центре с точкой доступа стандарта IEEE 802.11n 150 Мбит/с. Максимальная реальная скорость Wi-Fi не превысит 50 Мбит/с. Так как все стандарты Wi-Fi, работающие на одном частотном диапазоне, обратно совместимы друг с другом, то к такой сети можно подключиться при помощи Wi-Fi-адаптера стандарта IEEE 802.11g, 54 Мбит/с. При этом максимальная реальная скорость не превысит 20 Мбит/с.

Источник

Скорость сети WiFi N в жилых помещениях.

Хотя технология Wi-Fi получила значительный рост и помогает обеспечить доступ к Интернету миллионам людей во всём мире, последние версии стандарта не совсем помогли пользователям сети Wi-Fi узнать, какая реальная производительность их сети. В этой статье мы рассмотрим причины путаницы, возникшей вокруг производительности сетей Wi-Fi, и проанализируем случай наиболее используемой сегодня версии, коммерчески известной как Wi-Fi N.

Wi-Fi и стандарт IEEE 802.11

Прежде чем приступить к анализу производительности бытовых подключений Wi-Fi N, мы рассмотрим различные версии стандарта.

Технология Wi-Fi основана на использовании стандарта, разработанного всемирной организацией IEEE, посвящённой разработке стандартов в области науки и техники. Первая официальная версия стандарта была опубликована в 1997 году и называлась IEEE 802.11.

Параллельно с разработкой стандарта IEEE в 1999 году некоторые из наиболее важных производителей беспроводных решений создали организацию под названием WECA (Wireless Ethernet Compatibility Alliance) с целью обеспечения совместимости беспроводных устройств, разработанных в соответствии с этим стандартом. Несколько лет спустя эта организация меняет название на Wi-Fi Alliance. Устройства, соответствующие стандарту IEEE 802.11, продаются с наименованием Wi-Fi (Wireless Fidelity), что обеспечивает совместимость с остальными устройствами на рынке.

С тех пор было опубликовано несколько версий с последовательными улучшениями до достижения текущей версии, известной как IEEE 802.11ac, и опубликованной в январе 2014 года. В следующей таблице приведены все версии:

Стандартный Торговые названия Год Максимальная скорость теоретическая
IEEE 802.11 1997 2 Мбит / с
IEEE 802.11 a 802.11 A 1999 54 Мбит / с
IEEE 802.11 b 802.11 B, WiFi B 1999 11 Мбит / с
IEEE 802.11 g 802.11 G, Wi-Fi G 2003 54 Мбит / с
IEEE 802.11 n 802.11 N, WiFi N 2009 600 Мбит / с
IEE 802.11 ac 802.11 AC, WiFi AC 2014 1.3 Гбит / с (*)

(*) Стандарт IEEE 80211ac позволяет достигать более высоких скоростей, но на данный момент максимальная скорость устройств, сертифицированных Wi-Fi Alliance, показана в таблице.

Всем устройствам, которые соответствуют любому из этих стандартов, присваивается имя устройства Wi-Fi. Однако между ними могут быть большие различия.

Из всех версий стандарта первые три считаются практически вымершими, а наиболее часто используемой является версия 802.11N. Хотя, без сомнения, версия, которая до сих пор пользовалась большой популярностью, была версией 802.11G. Эта версия была опубликована в 2003 году, и спустя пару лет использование устройств Wi-Fi стало значительно расти.

Важной особенностью стандарта 802.11G является то, что все устройства, отвечающие этому стандарту, отвечают одинаковым техническим характеристикам. Все устройства могут использовать одну и ту же полосу частот, одинаковую полосу пропускания на канал, один и тот же тип модуляции, одну и ту же полосу защиты, при этом стандарт 802.11G обеспечивает теоретическую максимальную скорость 54 Мбит/с.

Но с выходом нового стандарта 802.11N всё изменилось с точки зрения простоты. Этот новый стандарт добавляет некоторые функции относительно своего предшественника 802.11G, которые могут существенно улучшить производительность беспроводных сетей. Но, и это важно, это не заставляет все устройства Wi-Fi N реализовывать все эти функции. Эта ситуация вызвала некоторую путаницу при оценке производительности устройств Wi-Fi N.

Стандарт 802.11N и все его вариации

До предыдущей версии, 802.11G, все устройства Wi-Fi имели одинаковые характеристики, с которыми производительность была более или менее одинаковой в оптимальных условиях с максимальным теоретическим пределом для всех устройств 54 Мбит/с.

Но в стандарте 802.11N определено несколько рабочих конфигураций, каждая из которых предлагает различные функции, и не обязательно, чтобы сертифицированное устройство, такое как 802.11N, включало все возможные конфигурации и, следовательно, предлагало максимальную производительность.

Ключ ко всему этому называется схемой модуляции и кодирования или более известной по его аббревиатуре MCS (Схема модуляции и кодирования). Схема модуляции и кодирования определяет значение некоторых параметров передачи, которые напрямую влияют на максимально достигнутую скорость, то есть производительность соединений Wi-Fi.

В конце этой статьи предлагается более техническое приложение по этой функции. На данный момент и для упрощения скажем, что стандарт IEEE 802.11n определяет до 77 MCS, то есть 77 различных режимов работы, и каждый из них предлагает до четырех теоретических максимальных скоростей, в зависимости от используемой ширины канала и защитного интервала.

На практике были реализованы только 32 из этих режимов. Режим 0, самый низкий, обеспечивает теоретическую максимальную скорость 6,50 Мбит/с (для канала 20 МГц и защитный интервал 800 нс). В то время как самый высокий режим, 31, обеспечивает теоретическую максимальную скорость 600 Мбит/с (с каналом 40 МГц и защитным интервалом 400 нс). Фактически, эта последняя скорость 600 Мбит/с считается максимальной скоростью стандарта.

И здесь начинается важная часть. Из стандартной MCS только первые 16 режимов требуются в точках доступа (или маршрутизаторах Wi-Fi). И только первые 8 обязательны для клиентских устройств – ноутбуков, смартфонов, планшетов и т. д. Все остальные являются необязательными.

В предыдущей таблице показана сравнительная скорость различных устройств Wi-Fi G и N. Следует отметить, что существует только одна возможная конфигурация для WiFi G, в то время как для WiFi N мы можем найти до 4 разных, каждое с разными максимальными скоростями в зависимости от реализованных режимов. Только устройство WiFi N, которое реализует все режимы работы, от 0 до 31, может использовать теоретическую максимальную скорость 600 Мбит/с.

Как используется MCS в WiFi N?

Обмен данными между точкой доступа (или маршрутизатором WiFi) и клиентом Wi-Fi осуществляется посредством согласования максимальной MCS, которая допускает условия передачи и характеристики устройств.

Читайте также:  Делаем из своего ноутбука точку WiFi в Ubuntu и Windows

Первоначально согласовывается максимально возможная MCS. Но эта MCS может быть уменьшена, чтобы минимизировать эффект из-за условий передачи, таких как расстояние между устройствами, препятствия, помехи и т. д.

Наиболее продвинутые типы модуляции и высокие скорости модуляции имеют преимущество передачи большего количества битов на единицу модулированного сигнала, но, напротив, они более чувствительны к ошибкам, вызванным условиями передачи, такими как помехи, слабый сигнал, расстояние между устройствами и т. д. Когда частота ошибок увеличивается, решение состоит в том, чтобы изменить тип модуляции, скорость модуляции или оба, пока не будет найдена схема, которая меньше всего зависит от условий передачи.

Следовательно, максимальная MCS, используемая в связи WiFi N, в условиях расстояния, препятствий, оптимальных помех, отмечается устройством с самой низкой MCS. Если мы пытаемся установить связь между точкой доступа или маршрутизатором WiFi, который реализует наивысшую MCS 31 и, следовательно, может достигать 600 Мбит/с, с клиентом WiFi N, например смартфоном, который реализует до MCS 7, теоретическая максимальная скорость из этого соединения будет только 150 Мбит/с, который обеспечивает MCS 7.

Мы уже видели, как преимущества сетей Wi-Fi N зависят от функций, реализованных в устройствах. MCS, используемая в связи Wi-Fi, будет установлена ​​устройством с меньшим количеством функций.

В случае жилых сетей N-Wi-Fi реальность такова, что маршрутизаторы Wi-Fi, которые операторы предоставляют своим клиентам, являются, так сказать, бюджетными. Это означает, что они реализуют минимальное количество режимов MCS, требуемое стандартом, которое, как мы видели, составляет 16. Следовательно, теоретическая максимальная скорость, которую поддерживает большинство жилых маршрутизаторов, поддерживаемых операторами, составляет 300 Мбит/с.

И то же самое происходит с беспроводными клиентами, такими как смартфоны, планшеты и т. д. Многие из них также реализуют минимальное количество режимов MCS, требуемое в стандарте, которое в данном случае равно 8. На практике это ограничивает теоретические максимальные скорости в жилых соединениях WiFi N до 150 Мбит/с.

Фактическая скорость в жилых помещениях WiFi N

До сих пор мы говорили о теоретических максимальных скоростях. В этом разделе мы предлагаем реальные измерения, проводимые в реальных условиях. Детали тестов можно увидеть в этой статье (ожидается публикация). Здесь мы увидим только выводы.

В тестах использовалась точка беспроводного доступа с максимальной MCS 15, то есть теоретическая максимальная скорость 300 Мбит/с.

Клиентские устройства были ноутбуком с внешней картой WiFi N, подключенной через USB, с максимальной MCS 7. И смартфоном Motorola Moto G. Производитель не указывает максимальный режим, который он допускает, но на основании результатов тестов мы выводим, что его 7 – максимальная ожидаемая MCS.

В дополнение к режиму MCS, используемому в WiFi, существует ещё один параметр, который существенно влияет на теоретическую максимальную скорость, а именно пропускную способность канала. Стандарт позволяет использовать две полосы пропускания: 20 МГц и 40 МГц. Ширина 20 МГц уже использовалась в Wi-Fi G. Ширина 40 МГц является новой в WiFi N и обеспечивает более высокие скорости передачи для той же MCS, но на практике он используется редко, главным образом потому, что его реализация не является обязательной, а некоторые устройства WiFi не реализуют его, и, во-вторых, потому что канал 40 МГц намного более чувствителен к помехам, особенно в жилых помещениях, где рядом есть другие сети WiFi. Поэтому чаще всего устройства WiFi N используют каналы с частотой 20 МГц, и при этом предположении предлагаются результаты (в вышеупомянутой статье с подробной информацией о тестах также предлагаются результаты тестов с каналом 40). МГц).

Наконец, мы просто указываем, что приложение, используемое для тестирования, называется iPerf. Это бесплатное программное обеспечение и доступно как для Windows, так и для Android.

Исходя из всего вышесказанного, тесты скорости между точкой доступа WiFi и ноутбуком дают следующий результат:

Фактическая максимальная скорость, которая была достигнута в тестах, как показано на предыдущем рисунке, составляет 51 Мбит/с. Эти тесты проводились в среде без помех, без препятствий и на расстоянии около двух метров между точкой доступа WiFi и портативным устройством.

Хотя режим MCS = 7 поддерживает теоретическую максимальную скорость до 150 Мбит/с, эта скорость достигается с помощью канала 40 МГц. Мы уже видели, что это не обычное использование канала. Обычно используется канал с частотой 20 МГц. В этом случае теоретическая максимальная скорость составляет 72,2 Мбит/с, что видно из следующей выдержки из таблицы режимов MCS:

В этом случае фактическая максимальная скорость, которая была получена, составила 49,1 Мбит/с. В этом случае также теоретическая максимальная скорость составляет 72,2 Мбит/с, поскольку используется канал 20 МГц.

Вывод:

В жилых помещениях наиболее распространенным сценарием является поиск устройств WiFi N, которые поддерживают режим MCS = 7 и используют каналы 20 МГц (в диапазоне 2,4 ГГц). В этих условиях теоретическая максимальная скорость составляет 72,2 Мбит/с, а фактическая максимальная скорость, достигнутая в наших тестах, составляет около 50 Мбит/с.

По сравнению с предыдущим стандартом WiFi G улучшение является значительным, но оно далеко от тех теоретических 600 Мбит/с, с которыми, в некоторых случаях, был продан стандарт WiFI N.

Источник



Тест скорости Wi-Fi 6 (AX) в реальных условиях квартиры

60 м2.
Роутер — ASUS RT-AX88U
Клиент — iPhone 12 Pro
Роутер расположен в одной из комнат как показано ниже.

Во время тестирования роутер работал в обычных условиях, с одновременно подключенными 4-мя устройствами на частоте 2.4 ГГц и 10 устройств на частоте 5 ГГц, из них активно использующих интернет на момент тестирования — 2, оба — телевизоры (IPTV и Netflix).

Тестирование проводил при помощи утилиты iperf3, в качестве сервера выступал сам роутер, хотя это может быть и любое другое устройство подключённое по гигабитному LAN.
Для того чтобы запустить iperf на роутере надо для начала в админке роутера включить доступ по ssh, данная настройка находится по пути: Администрирование — Система. После этого подключиться к роутеру по ssh и ввести там команду iperf3 -s.
На клиенте, в данном случае на айфоне, я из AppStore поставил первый попавшийся клиент iperf.

Результаты тестирования:
Комната 1 — средняя скорость после нескольких замеров

450 мбит/с.
Кухня, Ванная

330-350 мбит/с
Самая худшая скорость в С/У

250 мбит/с, на пути помимо стен была шахта вентиляции.
В коридоре (всё серое на схеме) — 300-500 мбит/с в зависимости от расположения.
Скорость в любой точке комнаты с роутером

800-850 мбит/c, пиковая

Точно сказать про материалы стен не могу, но, скорее всего, там обычные пеноблоки (газобетон).

Вот так у меня расположен роутер, немного в раскоряку под телевизором, рядом с кухонной стеной. Можно конечно поискать и более удачное расположение, но меня в принципе всё устраивает и никаких проблем с Wi-Fi, на протяжении уже нескольких месяцев после покупки роутера, не испытываю.

Источник

Как определить максимальную скорость wi-fi для Вашего устройства.

Производители всегда указывают на коробках устройств и в их характеристиках wi-fi стандарты. То, как указываются скорости wi-fi, является стандартом Wi-Fi Alliance.

Например на нашем сайте Вы можете увидеть эту характеристику для каждого роутера или wi-fi адаптера. К примеру:

Рисунок 1. Базовый однодиапазонный роутер TL-WR841N с портами 100 Мбит/сек.

Рисунок 2. Производительный двухдиапазонный роутер Archer C7 с портами 1000 Мбит/сек.

  1. Для того, чтобы понять, на какие скорости можно рассчитывать, используя выбранную Вами модель роутера, обратите внимание на его характеристики на нашем сайте. Также эти базовые характеристики указаны на его коробке.

Мы рассмотрим работу как базовой модели роутера, в данном примере это TL-WR841N, так и более «продвинутого» Archer C7.

Читайте также:  Как исправить проблемы с сетью на Mac

(!) Если Ваш роутер работает только на частоте 2.4ГГц, его мы рассмотрим в первой части статьи. В конце мы приведем данные для 5ГГц и расскажем о базовых преимуществах этой частоты. Рекомендуем последовательно прочитать все изложенные факты для обоих диапазонов Wi-Fi

Однодиапазонные роутеры, работающие на 2.4 ГГц.

Традиционно большинство наших роутеров имеют для 2.4ГГц wi-fi стандарт 802.11n 300 Мбит/сек.(Встречаются модели также со 150, 400 и 450 Мбит/сек)

Для примера мы возьмем самую популярную модель роутера в России среди всех. Это TL-WR841N.

На рисунке 1 Вы можете увидеть его характеристики. Он имеет порты 100 Мбит/сек и wi-fi стандарт 802.11n 300Мбит/сек.

Т.к. его порты 100 Мбит/сек – эта скорость является максимальной для него.

802.11n 300Мбит/сек – скорость его wi-fi стандарта. Т.е. если сетевая карта компьютера обладает таким же по скорости стандартом на 2.4ГГц = 300 Мбит/с, то мы увидим эту скорость в состоянии беспроводного соединения на компьютере.

Попробуйте сами:

Для windows 10: нажмите правой кнопкой на значок wi-fi сети справа внизу, возле часов и выберите «открыть параметры сети и интернет», затем «настройка параметров адаптера». Далее двойной клик по значку Wi-Fi сети, обычно он называется «Беспроводная сеть». См. картинки ниже

Для Windows 7 нажмите правой кнопкой на значок wi-fi сети справа внизу, возле часов и выберите «центр управления сетями и общим доступом», затем слева «изменение параметров адаптера». Далее двойной клик по значку Wi-Fi сети, обычно он называется «Беспроводная сеть».

Для примера на картинке – скорость соединения составляет 54 Мбит/сек, хотя у роутера стандарт 300 Мбит/сек. Это связано с тем, что на компьютере стоит адаптер, максимальная скорость которого составляет 54 Мбит/сек или к сети подключено другое устройство с таким низкоскоростным wi-fi адаптером. Об этом мы расскажем ниже.

Какую реальную скорость в таком случае можно реально получить?

  1. Wi-fi передает данные в полудуплексном режиме.

Это означает, что при работе по wi-fi роутер во-первых передает данные на прием и передачу по очереди, а не одновременно. Также он не может «общаться» со всеми клиентами по очереди(Mu-Mimo в данном примере не рассматривается). Таким образом скорость 300 Мбит/сек это, грубо говоря 150 Мбит/сек на прием и 150 Мбит/сек на передачу.

К примеру, для кабельного соединения т.к. оно работает в полном дуплексе т.е. данные одновременно передаются и принимаются скорость указывается 100 Мбит/сек и это означает 100 Мбит/сек на прием и 100 на передачу. Т.е. фактически по кабелю Вы имеете не 100 Мбит/сек, а 200(100 Мбит/сек на прием + 100 на передачу).

Так принято по стандарту для кабельных подключений- скорость указывается «в два раза меньше» реальной, а для wi-fi фактическая.

Это достаточно грубое описание для наглядности и простоты.

  1. И так стало понятно, что максимум скорости при физическом подключении в 300 Мбит/сек поwi-fi это 150 Мбит/сек на прием + 150 Мбит/сек на передачу. Какие еще здесь «подводные камни»?

Это скорость канала связи при согласованном роутером/точкой доступа и клиентом стандарте. Т.к. существует большой объем служебного трафика(при wi-fi это особенно актуально т.к. есть подтверждения доставки пакетов, зондирование среды передачи данных и т.п.), потери пакетов с последующей их повторной отправкой и т.п. Поэтому в реальности скорость еще ниже.

(!) Надо учитывать, что сети 2.4ГГц за счет большей длины волны лучше пробивают стены, поэтому на данный момент в рядовой многоэтажке и иногда даже частных домах Вы видите огромное количество сетей 2.4ГГц. Эти сети создают большое количество шумов для Вашей сети, и падения скорости на этой частоте значительно более внушительны чем на 5ГГц.

(!) На 2.4ГГц работает огромное количество устаревших устройств, а также устройств с дешевыми мобильными wi-fi модулями. Можно встретить компьютеры или смартфоны, также умные колонки или другие -гаджеты, которые имеют сетевые карты 802.11g со скоростью 54Мбит/сек, а также удешевленные адаптеры 802.11n 65, 72 или 150 Мбит/сек. Если такие устройства подключатся к Вашей wi-fi сети, то ее пропускная способность сильно снизится.

Пример скорости при подключении современного, но бюджетного смартфона к сети TL-WR841N:

  1. Стоит учитывать также, что скорость зависит от количества устройств, подключенных к роутеру, от того, что устройства в данный момент делают(загружают видео, скачивают что-то на торренте), а также от их собственныхwi-fi стандартов.

Например, если Вы подключите к сети роутера со стандартом 300 Мбит/сек 2 устройства, одно со стандартом 300 Мбит/сек, а второе 54 Мбит/сек, то скорость упадет и на компьютере с более высокоскоростным стандартом. Поэтому любые проверки скорости производятся тогда, когда к роутеру подключено только одно Ваше самое современное устройство.

В реальных условиях под воздействием вышеизложенных факторов, скорости на 2.4ГГц в 3-5 раз меньше чем канальная скорость . Например для 300 Мбит/сек, если у роутера порты 100 Мбит/сек, она может составлять 60-90Мбит/сек. Это не зависит от аппаратной мощности роутера, а на 99% зависит от окружающей обстановки и сетевых карт подключенных к нему телефонов/планшетов/компьютеров и т.п.

Итог для устройств, работающих на 2.4ГГц.

1)проверьте на нашем сайте характеристики Вашего роутера.

2)отключите ВСЕ устройства от роутера, кроме того, на котором Вы проверяете скорость.

3)подойдите максимально близко к роутеру

43)Проверьте скорость подключения к роутеру Рис.3 – Рис.5

5)Реальная скорость будет в 3-5 раз ниже от той, которую Вы видите.

В нашем примере на Рисунке 5 компьютер подключился к роутеру, у которого стандарт 300 Мбит/сек на скорости всего лишь 54 Мбит/сек т.к. у самого компьютера устаревший wi-fi адаптер. При такой скорости подключения можно рассчитывать на реальную скорость лишь в 15-20 Мбит/сек.

Если рассматривать не 2.4ГГц, а 5ГГц, то здесь все намного лучше.

На 5ГГц 802.11ac есть полезные функции, которые не доступны для 2.4ГГц такие как beamforming и MU-MIMO, которые позволяют увеличить радиус действия и производительность сети.

5ГГц предлагает огромные скорости канальных подключений. В зависимости от модели, можно увидеть скорости до 2167 Мбит/сек(примеру Archer C5400 и Archer C5400x).

5ГГц хуже пробивает стены. И это плюс. Задача этой частоты- в пределах одного помещения предоставить огромные скорости и не мешать окружающим. Таким образом Вы можете увидеть вокруг всего пару сетей 5ГГц и сотню сетей 2.4ГГц.

На 5ГГц нет такого количества бюджетных и устаревших устройств с низкоскоростными wi-fi модулями.

Реальная скорость на 5ГГц меньше скорости подключения в 2-3 раза. К примеру при скорости стандарта в 1300 Мбит/сек можно рассчитывать на реальные скорости порядка 400 – 550 Мбит/сек, если Ваши устройства также могут работать на 1300 Мбит/сек.

Пример подключения компьютера с сетевой картой 866 Мбит/сек к роутеру, который может работать на 1300 Мбит/сек. При таком подключении можно получить 250- 350 Мбит/сек реальной скорости.

Подводя итоги.

  1. Посмотрев характеристики роутера, Вы можете определить пропускную способность его сети на каждой частоте. Реальная скорость в 3-5 раз меньше скорости стандарта на 2.4ГГц и в 2-3 раза меньше на 5ГГц. Скорость стандарта можно посмотреть для каждого роутера в характеристиках на нашем сайте(Рисунок 1).
  2. Не достаточно иметь высокоскоростной роутер, Ваши конечные устройства(телефоны, планшеты, телевизоры, компьютеры) также должны иметь высокоскоростные адаптеры для работы с роутером на таких скоростях.
  3. На сегодняшний день для высоких скоростей предпочтительно использовать 5ГГц.

5ГГц хуже пробивает стены, не создает столько помех для Ваших соседей, и они также не создают их для Вас. На 5ГГц есть ряд технологий, увеличивающих радиус действия сети и ее производительность, также на этой частоте не работает такое количество устаревших и бюджетных устройств с низкоскоростными wi-fi картами.

Источник

Опубликовано в рубрике WiFi