Аппаратные прерывания Контроллер прерываний

Аппаратные прерывания. Контроллер прерываний

Прерывание означает временное прекращение основного процесса вычислений для выполнения некоторых запланированных или незапланированных действий, вызываемых работой аппаратуры или программы. Т.е. это процесс, временно переключающий микропроцессор на выполнение другой программы с последующим возвратом к прерванной программе. Нажимая клавишу на клавиатуре, мы инициируем немедленный вызов программы, которая распознает клавишу, заносит ее код в буфер клавиатуры, из которого он считывается другой программой. Т.е. на некоторое время микропроцессор прерывает выполнение текущей программы и переключается на программу обработки прерывания, так называемый обработчик прерывания. После того, как обработчик прерывания завершит свою работу, прерванная программа продолжит выполнение с точки, где было приостановлено ее выполнение. Адрес программы-обработчика прерывания вычисляется по таблице векторов прерываний.

Механизм прерываний поддерживается на аппаратном уровне. В зависимости от источника, прерывания делятся на:

  • аппаратные — возникают как реакция микропроцессора на физический сигнал от некоторого устройства (клавиатура, системные часы, клавиатура, жесткий диск и т.д.), по времени возникновения эти прерывания асинхронны, т.е. происходят в случайные моменты времени;
  • программные — вызываются искусственно с помощью соответствующей команды из программы (int), предназначены для выполнения некоторых действий операционной системы, являются синхронными;
  • исключения — являются реакцией микропроцессора на нестандартную ситуацию, возникшую внутри микропроцессора во время выполнения некоторой команды программы (деление на ноль, прерывание по флагу TF (трассировка)) [1].

Аппаратные средства системы прерываний

Система прерываний — это совокупность программных и аппаратных средств, реализующих механизм прерываний.

К аппаратным средствам системы прерываний относятся:

  • выводы микропроцессора — на них формируются сигналы, извещающие микропроцессор либо о том, что некоторое внешнее устройство «просит уделить ему внимание» (INTR), либо о том, что требуется безотлагательная обработка некоторого события или катастрофическая ошибка (NMI)
  • INTR — вывод для входного сигнала запроса на прерывание,
  • NMI — вывод для входного сигнала немаскируемого прерывания
  • INTA — вывод для выходного сигнала подтверждения получения сигнала прерывания микропроцессором (этот сигнал поступает на одноименный вход микросхемы контроллера 8259А;
  • программируемый контроллер прерываний 8259А (предназначен для фиксирования сигналов прерываний от восьми различных внешних устройств; он выполнен в виде микросхемы; обычно используют две последовательно соединенные микросхемы, поэтому кол-во возможных источников внешних прерываний до 15 плюс одно немаскируемое прерываний; именно он формирует номер вектора прерывания и выдает его шину данных);
  • внешние устройства (таймер, клавиатура, магнитные диски и т.п.)

Обработка прерываний

Прерывание вызывает ряд событий, которые происходят как в аппаратном, так и в программном обеспечении. На рис. 1 показана типичная последовательность этих событий.

После завершения работы устройства ввода-вывода происходит следующее:

  • Устройство посылает процессору сигнал прерывания.
  • Перед тем как ответить на прерывание, процессор должен завершить исполнение текущей команды (см. рис. 1).
  • Процессор производит проверку наличия прерывания, обнаруживает его и посылает устройству, приславшему это прерывание, уведомляющий сигнал об успешном приеме. Этот сигнал позволяет устройству снять свой сигнал прерывания.

Теперь процессору нужно подготовиться к передаче управления обработчику прерываний. Сначала необходимо сохранить всю важную информацию, чтобы в дальнейшем можно было вернуться к тому месту текущей программы, где она была приостановлена. Минимальная требуемая информация — это слово состояния программы и адрес очередной выполняемой команды, который находится в программном счетчике. Эти данные заносятся в системный управляющий стек.

Обработка простого прерыванияРисунок 2. Обработка простого прерывания

Далее в программный счетчик процессора загружается адрес входа программы обработки прерываний, которая отвечает за обработку данного прерывания. В зависимости от архитектуры компьютера и устройства операционной системы может существовать как одна программа для обработки всех прерываний, так может быть и своя программа обработки для каждого устройства и каждого типа прерываний. Если для обработки прерываний имеется несколько программ, то процессор должен определить, к какой из них следует обратиться. Эта информация может содержаться в первоначальном сигнале прерывания; в противном случае для получения необходимой информации процессор должен по очереди опросить все устройства, чтобы определить, какое из них отправило прерывание.

Как только в программный счетчик загружается новое значение, процессор переходит к следующему циклу команды, приступая к ее извлечению из памяти. Так как команда извлекается из ячейки, номер которой задается содержимым программного счетчика, управление переходит к программе обработки прерываний. Исполнение этой программы влечет за собой следующие операции.

Содержимое программного счетчика и слово состояния прерываемой программы уже хранятся в системном стеке. Однако это еще не вся информация, имеющая отношение к состоянию исполняемой программы. Например, нужно сохранить содержимое регистров процессора, так как эти регистры могут понадобиться обработчику прерываний. Поэтому необходимо сохранить всю информацию о состоянии программы. Обычно обработчик прерываний начинает свою работу с записи в стек содержимого всех регистров. Другая информация, которая должна быть сохранена, обсуждается в главе 3, «Описание процессов и управление ими». На рис. показан простой пример, в котором программа пользователя прерывается после выполнения команды из ячейки N. Содержимое всех регистров, а также адрес следующей команды (N+1), в сумме составляющие М слов, заносятся в стек. Указатель стека при этом обновляется, указывая на новую вершину стека. Обновляется и программный счетчик, указывая на начало программы обработки прерывания.

Теперь обработчик прерываний может начать свою работу. В процесс обработки прерывания входит проверка информации состояния, имеющая отношение к операциям ввода-вывода или другим событиям, вызвавшим прерывание. Сюда может также входить пересылка устройствам ввода-вывода дополнительных инструкций или уведомляющих сообщений.

После завершения обработки прерываний из стека извлекаются сохраненные ранее значения, которые вновь заносятся в регистры, возобновляя таким образом то состояние, в котором они пребывали до прерывания.

Последний этап — восстановление из стека слова состояния программы и содержимого программного счетчика. В результате следующей будет выполняться команда прерванной программы.

Из-за того, что прерывание не является подпрограммой, вызываемой из программы, для полного восстановления важно сохранить всю информацию состояния прерываемой программы. Однако прерывание может произойти в любой момент и в любом месте программы пользователя. Это событие непредсказуемо [2].

Контроллер прерываний

Контроллер прерываний предназначен для обработки и арбитража поступающих запросов на обслуживание к центральному процессору от переферийных устройств. По аналогии функции контроллера прерываний можно сравнить с секретарём какого–нибудь начальника. Секретарь должен решить, кого из посетителей допустить к боссу в первую очередь, а кого и потом, исходя из приоритетов, отдаваемых боссом и статуса самого посетителя. Так и в компьютерной системе, возможна такая ситуация, когда несколько переферийных устройств послали сигнал прерывания или запрос на прерывание. В компьютерной литературе этот сигнал обозначается IRQ (Interrupt Request).

Как уже выше говорилось, прерывания имеют определённый приоритет, который позволяет контроллеры прерываний отдавать предпочтение в данный момент времени одному устройству, а не другому. В современном компьютере существует до 16 внешних и периферийных устройств, генерирующие прерывания. Вот эти устройства:
–IRQ 0, системный таймер; –IRQ 1, клавиатура; –IRQ 2, исползуется для запросов устройств, подключенных каскадом; –IRQ 8, часы реального времени; –IRQ 9, зарезервировано; –IRQ 10, зарезервировано; –IRQ 11, зарезервировано; –IRQ 12, ps/2–мышь; –IRQ 13, сопроцессор; –IRQ 14, контроллер «жёсткого» диска; –IRQ 15, зарезервировано; –IRQ 3, порты COM2,COM4; –IRQ 4, порты COM1,COM3; –IRQ 5, порт LPT2; –IRQ 6, контроллер дисковода; –IRQ 7, порт LPT1,принтер.

Здесь сигналы приведены в порядке убывания приоритетов. Можно заметить, что после IRQ 2, следует IRQ 8. Дело в том, что в своё время контроллер прерываний состоял из двух микросхем, одна была подключена к другой. Вот эта вторая микросхема и подключается к линии IRQ 2, образуя каскад. Она обслуживает линии IRQ8–IRQ 15. А затем следуют линии первой микросхемы [3].

Работа контроллера прерывания

Работа контроллеов прерываний рассматривается на основе микросхем фирмы Intel 8259A, которые применялись в теперь уже очень старых компьютерах с процессорами до 386 серии. В этих компьютерах обычно было 2 микросхемы 8259A, подключенных каскадно, то–есть одна к другой. Одна из микросхем, подключенная по линии запроса на прерывание непосредственно к процессору является ведущей или мастером. Остальные,подключаются к ведущей через аналогичные выводы, называются ведомыми.

Схема подключения контроллеров прерываний и их взаимодействие с центральным процессоромРисунок 3. Схема подключения контроллеров прерываний и их взаимодействие с центральным процессором

На рисунке 3 изображена схема подключения контроллеров прерываний и их взаимодействие с центральным процессором. Сигналы на прерывание от переферийных устройств или ведомых контроллеров поступают на входы IR0–IR7 ведущего контроллера. Внутренняя логика ведущего контроллера обрабатывает поступившие запросы с точки зрения приоритета. Если приоритет запроса устройства достаточен, то на выходе INT контроллера вырабатывается сигнал, поступающий на вход INTR процессора. В противном случае, запрос блокируется.

Если процессор разрешает прерывания, то после завершения выполнения текущей команды, он вырабатывает по линии INTA последовательность сигналов, которая переводит ведомый контроллер в состояние невосприимчивости к поступающим новым запросам на прерывание, а кроме того, на линию данных выводится информация из внутренних регистров контроллера по которой процессор распознаёт тип прерывания.

Разрешение на прерывание процессор передаёт контроллеру прерываний через контроллер шины. Сигнал RD предназначен для того, чтобы контроллер прерываний поместил на шину данных содержимое внутренних регистров. По сигналу WR контроллер прерываний, наоборот, принимает данные с одноимённой шины и записывает их во внутренние регистры. Соответственно, это влияет на режим работы контроллера прерываний.

Вход CS подключается к шине адреса и по этому сигналу происходит идентификация конкретного контролллера прерываний. Вход A0 указывает на порт контроллера прерываний в пространстве ввода–вывода.

Входы IR0–IR7 предназначены для приёма запросов на прерывание от переферийных устройств и ведомых контроллеров.

Выходы CAS0–CAS2 предназначены для идентификации конкретного ведомого контроллера [4].

В статье рассмотрены аппаратные прерывания и устройство, функции, работу контроллера прерываний. Данный контроллер прерываний появился ещё в первых PC–совместимых компьютерах. С тех пор, и процессоры, и сам компьютер во многом изменились, хотя некоторые моменты остались. Поэтому, для того, чтобы было понятней и была рассмотрена организация контроллера прерываний 8295A.

На приведенной выше схеме показаны сигналов приходящие не только на ведомый и ведущий контроллеры прерываний, но и на остальные ведомые. Однако на вашем компьютере или ноутбуке на самом деле 2 контроллера прерываний, как выше указывалось: ведущий и ведомый. Но можно создавать свои компьютерные системы, используя таким образом до 64 ведомых контроллеров прерываний.

В современных компьютерах уже давно функции контроллера прерываний выполняют не микросхемы 8259A, а южный мост. Однако, для всех программ и устройств всё остаётся по–прежнему. Более того, контроллер прерываний можно программировать, и обращаться к внутренним регистрам и портам необходимо точно также, как и к контроллеру 8259A [5].

Читайте также:  Руководство по использованию SpeedFan

Заключение

В данной работе были рассмотрены прерывания, а именно аппаратные средства обработки прерываний и принцип обработки прерываний. Также рассмотрены контроллеры прерываний и принцип их работы.

Прерывание означает временное прекращение основного процесса вычислений для выполнения некоторых запланированных или незапланированных действий, вызываемых работой аппаратуры или программы. Механизм прерываний поддерживается на аппаратном уровне. Аппаратные прерывания возникают как реакция микропроцессора на физический сигнал от некоторого устройства (клавиатура, системные часы, клавиатура, жесткий диск и т.д.), по времени возникновения эти прерывания асинхронны, т.е. происходят в случайные моменты времени.

Контроллер прерываний предназначен для обработки и арбитража поступающих запросов на обслуживание к центральному процессору от переферийных устройств. Прерывания имеют определённый приоритет, который позволяет контроллеру прерываний отдавать предпочтение в данный момент времени одному устройству, а не другому. В современном компьютере существует до 16 внешних и переферийных устройств, генерирующие прерывания.

Список литературы

  1. Лекция. Прерывания. Эл. Ресурс. http://hromatron.narod.ru/_lekcii/prerivania_lekcia_g2013.htm
  2. Системные прерывания | Аппаратное прерывание | Обработка прерываний http://life-prog.ru/view_os.php?id=16
  3. Контроллер прерываний. Эл. Ресурс http://sdelaycomputersam.ru/Controller_irq.php,
  4. Прерывания. Контроллер прерываний. Устройство, функции, работа. Эл. Ресурс http://sdelaycomputersam.ru/Controller_irq.php
  5. Структура и инициализация контроллера прерываний Intel 8259A Эл.ресурс https://dev64.wordpress.com/2012/05/30/8259-programming/

Электронное периодическое издание зарегистрировано в Федеральной службе по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), свидетельство о регистрации СМИ — ЭЛ № ФС77-41429 от 23.07.2010 г.

Источник

Прерывание

Прерывание (англ.  interrupt ) — сигнал, сообщающий процессору о наступлении какого-либо события. При этом выполнение текущей последовательности команд приостанавливается и управление передаётся обработчику прерывания, который реагирует на событие и обслуживает его, после чего возвращает управление в прерванный код. [1]

В зависимости от источника возникновения сигнала прерывания делятся на:

  • асинхронные или внешние (аппаратные) — события, которые исходят от внешних источников (например, периферийных устройств) и могут произойти в любой произвольный момент: сигнал от таймера, сетевой карты или дискового накопителя, нажатие клавиш клавиатуры, движение мыши. Факт возникновения в системе такого прерывания трактуется как запрос на прерывание (англ.  Interrupt request, IRQ );
  • синхронные или внутренние — события в самом процессоре как результат нарушения каких-то условий при исполнении машинного кода: деление на ноль или переполнение, обращение к недопустимым адресам или недопустимый код операции;
  • программные (частный случай внутреннего прерывания) — инициируются исполнением специальной инструкции в коде программы. Программные прерывания как правило используются для обращения к функциям встроенного программного обеспечения (firmware), драйверов и операционной системы.

Термин «ловушка» (англ.  trap ) иногда используется как синоним термина «прерывание» или «внутреннее прерывание». Как правило, словоупотребление устанавливается в документации производителя конкретной архитектуры процессора.

Содержание

Маскирование

В зависимости от возможности запрета внешние прерывания делятся на:

  • маскируемые — прерывания, которые можно запрещать установкой соответствующих битов в регистре маскирования прерываний (в x86-процессорах — сбросом флага IF в регистре флагов);
  • немаскируемые (англ.  Non-maskable interrupt, NMI ) — обрабатываются всегда, независимо от запретов на другие прерывания. К примеру, такое прерывание может быть вызвано сбоем в микросхеме памяти.

Обработчики прерываний обычно пишутся таким образом, чтобы время их обработки было как можно меньшим, поскольку во время их работы могут не обрабатываться другие прерывания, а если их будет много (особенно от одного источника), то они могут теряться. В Windows для этого применяется механизм отложенного вызова процедур.

Приоритизация

До окончания обработки прерывания обычно устанавливается запрет на обработку этого типа прерывания, чтобы процессор не входил в цикл обработки одного прерывания. Приоритизация означает, что все источники прерываний делятся на классы и каждому классу назначается свой уровень приоритета запроса на прерывание. Приоритеты могут обслуживаться как относительные и абсолютные [источник не указан 985 дней] .

  • Относительное обслуживание прерываний означает, что если во время обработки прерывания поступает более приоритетное прерывание, то это прерывание будет обработано только после завершения текущей процедуры обработки прерывания.
  • Абсолютное обслуживание прерываний означает, что если во время обработки прерывания поступает более приоритетное прерывание, то текущая процедура обработки прерывания вытесняется, и процессор начинает выполнять обработку вновь поступившего более приоритетного прерывания. После завершения этой процедуры процессор возвращается к выполнению вытесненной процедуры обработки прерывания.

Таблица прерываний

Вектор прерывания — закреплённый за устройством номер, который идентифицирует соответствующий обработчик прерываний. Векторы прерываний объединяются в таблицу векторов прерываний, содержащую адреса обработчиков прерываний. Местоположение таблицы зависит от типа и режима работы процессора.

Программное прерывание

Программное прерывание — синхронное прерывание, которое может осуществить программа с помощью специальной инструкции.

В процессорах архитектуры x86 для явного вызова синхронного прерывания имеется инструкция Int , аргументом которой является номер прерывания (от 0 до 255). В IBM PC-совместимых компьютерах обработку некоторых прерываний осуществляют подпрограммы BIOS, хранящиеся в ПЗУ, и это служит интерфейсом для доступа к сервису, предоставляемому BIOS. Также, обслуживание прерываний могут взять на себя BIOS карт расширений (например, сетевых или видеокарт), операционная система и даже обычные (прикладные) программы, которые постоянно находятся в памяти во время работы других программ (т. н. резидентные программы). В отличие от реального режима, в защищённом режиме x86-процессоров обычные программы не могут обслуживать прерывания, эта функция доступна только системному коду (операционной системе).

MS-DOS использует для взаимодействия со своими модулями и прикладными программами прерывания с номерами от 20h до 3Fh (числа даны в шестнадцатеричной системе счисления, как это принято при программировании на языке ассемблера x86). Например, доступ к основному множеству функций MS-DOS осуществляется исполнением инструкции Int 21h (при этом номер функции и её аргументы передаются в регистрах). Это распределение номеров прерываний не закреплено аппаратно и другие программы могут устанавливать свои обработчики прерываний вместо или поверх уже имеющихся обработчиков, установленных MS-DOS или другими программами, что, как правило, используется для изменения функциональности или расширения списка системных функций. Также, этой возможностью пользуются вирусы.

Источник

Вопрос № 9 Система прерываний ЭВМ

Прерывание (interrupt) – это прекращение выполнение текущей команды или текущей последовательности команд для обработки некоторого события специальной программой – обработчиком прерывания (interrupt handier), с последующим возвратом к выполнению прерванной программы. Прерывание используется для быстрой реакции процессора на особые ситуации, возникающие при выполнении программы и взаимодействии с внешними устройствами.

Различают следующие типы прерываний:

Внешние прерывания – происходят асинхронно, т.е. происходят в случайный момент времени в процессе выполнения программы (например, от внешних устройств: других ЭВМ, аварийных и некоторых других датчиков технологического процесса).

маскируемые*, которые могут быть замаскированы программными средствами компьютера

немаскируемые, запрос от которых таким образом замаскирован быть не может.

(* Маска прерывания – представляет собой двоичный код, разряды которого поставлены в соответствие запросам или классам прерывания. Маска загружается командой программы в регистр маски. Состояние 1 в данном разряде регистра маски разрешает, а состояние 0 запрещает (маскирует) прерывание текущей программы от соответствующего запроса.

Внешние аппаратные прерывания инициируются контроллерами периферийного оборудования. Источники сигналов прерываний подключаются либо к выводу немаскируемых прерываний процессора (NMI), либо к выводу маскируемых прерываний (INTR). Линия NMI обычно предназначается для прерываний, вызываемых катастрофическими событиями, такими как, ошибки четности памяти или авария питания.

Прерывания от внешних устройств поступают в процессор через специальное устройство – программируемый контроллер прерываний PIC. Центральный процессор управляет контроллером через набор портов ввода-вывода, а контроллер в свою очередь сигнализирует процессору через вывод INTR. PIC предоставляет возможность программно разрешать и запрещать прерывания от конкретных устройств, а также назначать им приоритеты. Изготовители компьютерных систем так же, как и изготовители периферийного оборудования, назначают внешним устройствам определенные уровни приоритетов контроллера прерываний. Эти назначения выполняются в виде физических электрических соединений и не могут быть изменены программным образом.

Внутренние прерывания – происходят синхронно, т.е. возникают по конкретной причине и можно предугадать возникновение такого прерывания. Например, при делении на ноль, появление ошибки в работе аппаратуры самой ЭВМ, переполнение разрядной сетки, выход из установленной для данной программы области памяти, затребование периферийным устройством операции ввода-вывода, завершении операции ввода-вывода периферийным устройством или возникновение при этой операции особой ситуации и др.

Программные прерывания – вызываются следующими ситуациями:

— особый случай, возникший при выполнении команды и препятствующий нормальному продолжению программы (переполнение, нарушение защиты памяти, отсутствие нужной страницы в оперативной памяти и т.п.)

— наличие в программе специальной команды прерывания INT n, используемой обычно программистом при обращении к специальным функциям операционной системы для ввода-вывода информации.

ОРГАНИЗАЦИЯ ПРЕРЫВАНИЙ.

Любая особая ситуация, вызывающая прерывание, сопровождается сигналом, называемым запросом прерывания. Запросы прерываний от внешних устройств поступают в процессор по специальным линиям, а запросы, возникающие в процессе выполнения программы, поступают непосредственно изнутри микропроцессора. Механизмы обработки прерываний обоих типов схожи.

Каждому запросу прерывания в компьютере присваивается свой номер (тип прерывания), используемый для определения адреса обработчика прерывания.

При поступлении запроса прерывания компьютер выполняет следующую последовательность действий:

1. определение наиболее приоритетного незамаскированного запроса на прерывание (если одновременно поступило несколько запросов)

2. определение типа выбранного запроса

3. сохранение текущего состояния счетчика команд и регистра флагов

4. определение адреса обработчика прерывания по типу прерывания и передача управления первой команде этого обработчика

5. выполнение программы – обработчика прерывания

6. восстановление сохраненных значений счетчика команд и регистра флагов прерванной программы

7. продолжение выполнения прерванной программы

Этапы 1-4 выполняются аппаратными средствами ЭВМ автоматически при появлении запроса прерывания. Этап 6 также выполняется аппаратно по команде возврата из обработчика прерывания.

Задача программиста – составить программу – обработчик прерывания, которая выполняла бы действия, связанные с появлением запроса данного типа, и поместить адрес начала этой программы в специальной таблице адресов прерывания. Программа-обработчик, как правило, должна начинаться с сохранения состояния тех регистров процессора, которые будут ею изменяться, и заканчиваться восстановлением состояния этих регистров. Программа-обработчик должна завершаться специальной командой, указывающей процессору на необходимость возврата в прерванную программу.

Время реакции – это время между появлением сигнала запроса прерывания и началом выполнения обработчика прерывания в том случае, если данное прерывание разрешено к обслуживанию.

Время реакции зависит от момента, когда процессор определяет факт наличия запроса прерывания. Опрос запросов прерываний может проводиться либо по окончании выполнения очередного этапа команды (например, считывание команды, считывание первого операнда и т.д.), либо после завершения каждой команды программы. Первый подход обеспечивает более быструю реакцию, но при этом необходимо при переходе к обработчику прерывания сохранять большой объем информации о прерываемой программе, включающей состояние буферных регистров процессора, номера завершившегося этапа и т.д. При возврате из обработчика также необходимо выполнить большой объем работы по восстановлению состояния процессора. Во втором случае время реакции может быть достаточно большим. Однако при переходе к обработчику прерывания требуется запоминание минимального контекста прерываемой программы (обычно это счетчик команд и регистр флагов). В настоящее время в компьютерах чаще используется распознавание запроса прерывания после завершения очередной команды.

Читайте также:  Выбор редакции Процессор AMD FX 9370 OEM

Глубина прерывания –максимальное число программ, которые могут прерывать друг друга. Глубина прерывания обычно совпадает с числом уровней приоритетов, распознаваемых системой прерываний.

Рис. 14.1. Выполнение прерывания в компьютере: tр — время реакции процессора на запрос прерывания; tс — время сохранения состояния прерываемой программы и вызова обработчика прерывания; tв — время восстановления прерванной программ

Механизм прерываний поддерживается аппаратными и программными средствами ОС. Различают векторный (vectored) и опрашиваемый (polled) типы прерываний. В обоих способах процессору передается информация об уровне приоритета.

При векторном типе прерыванийв процессор передается также адрес обработчика прерывания. Для векторного типа схема обработки такова: электрический сигнал – запрос на подтверждение – вектор прерывания – обработчик.

Вектор прерывания – вектор начального состояния прерывающей программы. Вектор прерывания содержит всю необходимую информацию для перехода к прерывающей программе, в том числе ее начальный адрес. Каждому запросу (уровню) прерывания, каждому периферийному устройству соответствует свой вектор прерывания, способный инициировать выполнение соответствующей прерывающей программы. Векторы прерывания обычно находятся в специально выделенных фиксированных ячейках памяти.

Для опрашиваемого типа прерыванийсхема обработки такова: сигнал – запрос на подтверждение – уровень приоритета. Каждый уровень связан с несколькими устройствами. Вызываются все обработчики данного уровня. Один опознает свое устройство. Для упорядочивания работы обработчиков введен механизм приоритетных очередей, которые обслуживает модуль ОС – диспетчер прерываний

Приоритет прерывания (interrupt priority) – характеристика важности, присваиваемая программным прерываниям.

Аппарат приоритетов предназначен для повышения эффективности использования всех ресурсов ВС. Так, неэффективно одновременное выполнение двух заданий, каждое из которых требует большой загрузки устройств ввода-вывода и незначительно использует центральный процессор. Приоритет задания может назначаться исходя из:

— времени его выполнения («короткие» задания имеют более высокий приоритет по сравнению с «длинными» заданиями)

— объема используемой оперативной памяти (задания, требующие большого объема памяти, не должны иметь одинаковый приоритет)

— интенсивности и объема использования других ресурсов ВС

— срочности выполнения и т.д.

Понятие приоритета в прерывании программ имеет два смысла.

Предположим, что никаких ограничений на время поступления запросов прерывания не накладывается. При одновременном поступлении нескольких запросов для немедленного удовлетворения может быть принят только один. Этот тип приоритета, определяющий очередность рассмотрения запросов прерывания, называют приоритетом между запросами прерываний.

Прерывающие программы, однако, могут иметь относительно текущей программы различную степень важности, и не любым запросом может быть прервана выполняющаяся программа. Чтобы иметь возможность прервать текущую программу, принятый запрос должен соответствовать программе более важной, нежели выполняемая в данный момент. Этот тип приоритета определяет старшинство программ и его обычно называют приоритетом между прерывающими программами.

1. ПРИОРИТЕТ МЕЖДУ ЗАПРОСАМИ ПРЕРЫВАНИЙ

Различают абсолютный и относительный приоритеты:

Абсолютный приоритет – запрос, имеющий абсолютный приоритет, прерывает выполняемую программу и инициирует выполнение соответствующей прерывающей программы.

Относительный приоритет – запрос с относительным приоритетом является первым кандидатом на обслуживание после завершения выполнения текущей программы.

При программной распознавании причин прерывания прерывающая программа начинает анализ с тех запросов на прерывание, которые имеют более высокий приоритет. При этом в процессе работы мы можем программным путем изменить приоритет запросов. При аппаратном распознавании причин прерывания указанные функции возлагаются на специальное оборудование.

В случае простейшей аппаратной реализации приоритета между запросами прерываний может быть использован метод «последовательного поиска» (рис. 1). Суть метода состоит в последовательном изменении содержимого счетчика от 0 до 2 n -1 и просмотре всех 2 n уровней прерывания до совпадения содержимого счетчика с номером уровня. При одновременном появлении нескольких запросов жестко закрепляется запрос с уровнем с меньшим номером. В этом случае приоритет жестко фиксированным. Изменить приоритетные соотношения можно лишь пересоединением линий сигналов запросов на входах системы прерывания. Метод «последовательного поиска» прост в реализации, но время реакции велико, т.к. в общем случае необходимо прохождение счетчиком всех 2 n позиций, что при большом n может выходить за допустимые временные пределы. Особенно это важно при работе в режиме реального времени.

Рис. 1. Реализация метода «последовательного поиска»

2. ЗАПРОС МЕЖДУ ПРЕРЫВАЮЩИМИ ПРОГРАММАМИ

В случае реализации приоритета между прерывающими программами определяется, какие из программ могут прервать данную программу, а какие нет. Этот вид приоритета для многоуровневых систем с достаточной глубиной прерывания имеет гораздо большее значение, чем приоритет между запросами прерывания. Таким образом, приоритет между запросами прерывания нужен лишь для выбора одного запроса из многих, а приоритет между прерывающимися программами определяет фактический порядок выполнения программ.

Так как степень важности программ, их объем, требуемые ресурсы и т.д. могут изменяться в ходе вычислительного процесса, то только приоритеты между запросами прерывания могут быть строго зафиксированы. Приоритеты же между прерывающими программами должны быть программно-управляемыми. В ЭВМ применяются два способа реализации программно-управляемого приоритета прерывающих программ, в которых используются соответственно порог прерывания(в малых и микроЭВМ) и маски прерывания(в ЭВМ общего назначения).

Порог прерывания – этот способ позволяет в ходе вычислительного процесса программным путем изменять уровень приоритета процессора (а следовательно, и обрабатываемой в данный момент на процессоре программы) относительно приоритетов запросов источника прерывания (в основном периферийных устройств), другими словами, задавать порог прерывания, т.е. минимальный уровень приоритета запросов, которым разрешается прерывать программу, идущую на процессоре.

Порог прерывания задается командой программы, устанавливающей в регистре порога прерывания код порога прерывания. Специальная схема выделяет наиболее приоритетный запрос прерывания, сравнивает его приоритет с порогом прерывания и, если он оказывается выше порога, вырабатывает общий сигнал прерывания, и начинается процедура прерывания.

Маска прерывания – шаблонная последовательность знаков, управляющая сохранением или исключением отдельных частей другой последовательности знаков. В простейшем виде маска – это двоичное число, каждый разряд которого соответствует одному из уровней прерывания и разрешает (например, состояние «1») или запрещает (состояние «0») прерывание от запросов, относящихся к данному уровню. Маска загружается командой программы в регистр маски. Управление приоритетом находится полностью в распоряжении программы: программа, изменяя маску в регистре маски, может устанавливать произвольные приоритетные соотношения между программами без перекоммутации линий, по которым поступают запросы прерывания. Для каждой прерывающей программы может быть установлена своя маска, указывающая, какие программы способны ее прерывать. Каждый разряд маски соответствует отдельной программе. Маски всех программ хранятся в памяти. Если какая-нибудь программа вызывается для выполнения, то ее маска засылается в регистр маски. Физически маска реализуется обычно в виде триггерного регистра, состояние которого можно изменить программным путем. При формировании маски состояние «1» получают лишь те триггеры, которые соответствуют программам с более высоким, чем у данной программы, приоритетом.

Иногда создаются «групповые» маски, при которых каждый разряд воздействует на несколько уровней одновременно. Уровни прерываний, которые управляются одним разрядом маски прерывания, образуют «класс прерывания». Высшей степенью этой иерархии является главный триггер прерывания, выключающий (или включающий) всю СПП полностью.

В случае поступления запросов, запрещенных маской прерывания, СПП либо запоминает запрос, чтобы при снятии запрета удовлетворять его, либо игнорирует запрос, если его удовлетворение через время t может отрицательно повлиять на ход вычислительного процесса. Возможны и другие реакции СПП. В таком случае в маске на один уровень отводится более одного бита.

Источник



Прерывание (Операционные Системы)

Прерывание — сигнал к процессору , испускаемый аппаратными средствами или программным обеспечением, и указывающий на событие, которое требует немедленного внимания. Прерывание предупреждает процессор о высокоприоритетном состоянии, требующем прерывания текущего кода, выполняемого процессором. Процессор отвечает, приостанавливая свои текущие действия, сохраняя свое состояние и выполняя функцию, называемую обработчиком прерываний (или подпрограммой обработки прерываний, ISR) для обработки события. Это прерывание является временным, и после завершения обработки обработчика прерывания процессор возобновляет обычную работу. Существует два типа прерываний: аппаратные прерывания и программные прерывания. [1]

Каждое прерывание имеет свой собственный обработчик прерываний. Количество аппаратных прерываний ограничено числом строк запроса прерывания (IRQ) для процессора, но могут быть сотни различных программных прерываний. Прерывания — это широко используемая техника многозадачности компьютеров, в первую очередь в реальном времени. Такая система называется управляемой прерываниями.

Содержание

История

Первое фактическое использование прерываний приписывают компьютеру UNIVAC 1103 в 1953 году. [2] На IBM 650 (1954) было применено впервые прерывание путём маскировки. Национальное бюро стандартов DYSEAC (1954) первым использовало прерывания для ввода / вывода. IBM 704 был первым компьютером, использующим прерывания для отладки с «передаточной ловушкой», которая может ссылаться на специальную процедуру, когда команда ветвления была имеет столкновение. Система TX-2 (1957) была первой, обеспечивающей несколько уровней приоритетных прерываний. [3]

Типы прерываний

Прерывания могут быть разделены на следующие типы:

  • Маскируемое прерывание (IRQ): аппаратное прерывание, которое можно игнорировать, устанавливая бит в битовой маске регистра маски прерываний (IMR).
  • Немаскируемое прерывание (NMI): аппаратное прерывание, в котором отсутствует связанная битовая маска, поэтому ее нельзя игнорировать. NMI используются для задач с высшим приоритетом, например таких как таймеры.
  • Межпроцессорное прерывание (IPI): особый случай прерывания, которое генерируется одним процессором для прерывания другого процессора в многопроцессорной системе.
  • Программное прерывание: прерывание, генерируемое в процессоре путем выполнения инструкции. Программные прерывания часто используются для реализации системных вызовов, поскольку они приводят к вызову подпрограммы с изменением уровня вызова ЦП.
  • Ложное прерывание: нежелательное аппаратное прерывание. Как правило, такие прерывания генерируются системными условиями, такими как электрические помехи в линии прерывания или из-за технически неправильно разработанного оборудования.

Процессоры обычно имеют внутреннюю маску прерываний, которая позволяет программному обеспечению игнорировать все внешние аппаратные прерывания, пока она установлена. Установка или очистка этой маски может быть быстрее, чем доступ к регистру маски прерываний (IMR) в PIC или отключение прерываний в самом устройстве. В некоторых случаях, например в случае архитектуры x86, отключение и включение прерываний на самом процессоре действует как барьер памяти.

Читайте также:  Термопаста для процессоров intel

Прерывание, которое оставляет машину в четко определенном состоянии, называется точным прерыванием. Такое прерывание имеет четыре свойства:

  • Счетчик программ (PC — Program Counter) сохраняется в известном месте.
  • Все инструкции перед тем, на который указывает счетчик программ, полностью выполнены.
  • Никакая инструкция, кроме той, на которую указывает счетчик программ, не была выполнена, или любые такие инструкции отменяются до обработки прерывания.
  • Состояние выполнения инструкции, на которую указывает счетчик программ, известно.

Прерывание, которое не соответствует указанным выше требованиям, называется неточным прерыванием.

Аппаратные прерывания

Аппаратные прерывания используются устройствами для передачи информации о том, что они требуют внимания со стороны операционной системы. [4] Внутренние аппаратные прерывания реализуются с использованием электронных сигналов оповещения, которые отправляются процессору от внешнего устройства, которое является частью самого компьютера, например контроллер диска, или внешнее периферийное устройство. К слову, нажатие клавиши на клавиатуре или перемещение мыши вызывают аппаратные прерывания, которые заставляют процессор считывать нажатие клавиши или положение мыши. В отличие от типа программного обеспечения, аппаратные прерывания являются асинхронными и могут произойти в середине выполнения инструкции, что требует дополнительного внимания при программировании. Акт инициирования аппаратного прерывания называется запросом прерывания (IRQ). [1]

Программные прерывания

Программное прерывание вызвано либо исключительным состоянием в самом процессоре, либо специальной инструкцией в наборе команд, которая вызывает прерывание, когда инструкция выполняется (см. рисунок 1). Первую часто называют ловушкой или исключением и используют для ошибок или событий, происходящих во время выполнения программы, которые настолько исключительны, что не могут быть обработаны в самой программе. Например, исключение деления на ноль будет выдано, если арифметическо-логическому блоку процессора приказано будет делить число на ноль, поскольку эта инструкция является ошибкой и невозможной. Операционная система поймает это исключение и сможет решить, что с этим делать: как правило, прерывать процесс и отображать соответствующее сообщение об ошибке. Инструкции программного прерывания могут функционировать аналогично вызовам подпрограмм и используются для различных целей, таких как запрос служб от драйверов устройств, например прерывания, отправляемые на контроллер диска и с контролера диска для запроса чтения или записи данных на диск и с диска. [1]

Сложность с разделением линий прерывания

Несколько устройств, совместно использующих линию прерывания (любого стиля запуска), действуют как источники паразитных прерываний по отношению друг к другу. При наличии множества устройств в одной линии рабочая нагрузка при обслуживании прерываний увеличивается пропорционально квадрату количества устройств. Поэтому предпочтительно распределять устройства равномерно по доступным линиям прерывания. Нехватка линий прерывания является проблемой в старых конструкциях системы, где линии прерывания являются различными физическими проводниками. Прерывания с сигналом сообщения, где линия прерывания является виртуальной, предпочтительны в новых системных архитектурах (таких как PCI Express) и в значительной степени решают эту проблему.

Некоторые устройства с плохо разработанным программным интерфейсом не позволяют определить, запросили ли они обслуживание. Они могут запереться или иным образом плохо себя вести, если их обслуживают, когда они этого не хотят. Такие устройства не могут терпеть паразитные прерывания, а также не могут терпеть совместное использование линии прерывания. Карты ISA , из-за зачастую дешевого дизайна и конструкции, печально известны этой проблемой. Такие устройства становятся все более редкими, поскольку аппаратная логика становится дешевле, а новые системные архитектуры требуют разделяемых прерываний. [1]

Проблемы с производительностью

Прерывания обеспечивают низкую нагрузку и хорошую задержку при низкой нагрузке, но значительно ухудшаются при высокой частоте прерываний, если не предпринимаются меры для предотвращения нескольких патологий. Это различные формы живых блокировок , когда система тратит все свое время на обработку прерываний, исключая другие необходимые задачи. В экстремальных условиях большое количество прерываний (например, очень высокий сетевой трафик) может полностью остановить систему. Чтобы избежать таких проблем, операционная система должна планировать обработку сетевых прерываний так же тщательно, как и планирование выполнения процесса.

С многоядерными процессорами, дополнительные улучшения производительности в обработке прерываний могут быть достигнуты с помощью масштабирования на стороне приема (RSS), когда используются сетевые адаптеры с несколькими очередями. Такие NIC предоставляют несколько очередей приема, связанных с отдельными прерываниями; путем маршрутизации каждого из этих прерываний на разные ядра обработка запросов на прерывание, запускаемых сетевым трафиком, полученным одним NIC, может быть распределена между несколькими ядрами. Распределение прерываний между ядрами может выполняться операционной системой автоматически, либо маршрутизация прерываний (обычно называемая привязкой IRQ) может быть настроена вручную.

Чисто программная реализация распределения принимаемого трафика, известная как управление приемными пакетами (RPS), распределяет принятый трафик между ядрами позже в тракте данных как часть функциональности обработчика прерываний. Преимущества RPS по RSS не включают требований к конкретному оборудованию, более продвинутым фильтрам распределения трафика и уменьшенной частоте прерываний, создаваемых NIC. Как недостаток, RPS увеличивает частоту межпроцессорных прерываний (IPI). Управление потоком приема (RFS) расширяет программный подход, учитывая локальность приложений; Дальнейшее улучшение производительности достигается за счет обработки запросов на прерывание теми же ядрами, на которых конкретные сетевые пакеты будут использоваться целевым приложением. [1]

Типичное использование

Типичное использование прерываний включает в себя следующее: системные таймеры, дисковый ввод / вывод, сигналы-выключение и ловушки. Существуют прерывания для передачи байтов данных с использованием UART или Ethernet; для чувствительных нажатий клавиш, управления двигателями и т.д.

Другое типичное использование состоит в том, чтобы генерировать периодические прерывания путем деления выходного сигнала кварцевого генератора и с помощью обработчика прерываний подсчитывать прерывания, чтобы процессор мог сохранять время. Эти периодические прерывания часто используются планировщиком задач ОС для перепланирования приоритетов запущенных процессов. Некоторые старые компьютеры генерировали периодические прерывания от частоты линии электропередачи, потому что она контролировалась коммунальными службами, чтобы исключить длительный дрейф электрических часов.

Например, прерывание диска сигнализирует о завершении передачи данных с или на периферийное устройство диска; процесс, ожидающий чтения или записи файла, запускается снова. В качестве другого примера — прерывание при отключении питания прогнозирует или запрашивает потерю мощности, позволяя компьютерному оборудованию выполнять упорядоченное завершение работы. Кроме того, прерывания используются в функциях «typeahead» для буферизации событий, таких как нажатия клавиш .

Прерывания используются для эмуляции инструкций, которые не реализованы на определенных моделях в компьютерной линии. Например, инструкции с плавающей запятой могут быть реализованы в аппаратных средствах в некоторых системах и эмулироваться в более дешевых системах. Выполнение невыполненной инструкции вызовет прерывание. Обработчик прерываний операционной системы распознает возникновение невыполненной инструкции, интерпретирует инструкцию в программной подпрограмме и затем вернется к программе прерывания, как если бы инструкция была выполнена. Это обеспечивает переносимость прикладного программного обеспечения по всей линии. [1]

Источник

В чем разница между сигналом и прерыванием

В чем разница между сигналом и прерыванием

главное отличие между сигналом и прерыванием является то, что Сигнал — это событие, которое запускается ЦП или программным обеспечением, работающим на ЦП, в то время как прерывание — это событие, которое запускается внешним компонентом, отличным от ЦП.

Сигнал — это событие, которое запускается процессором. Он посылает эти сигналы различным процессам, работающим на компьютере. С другой стороны, прерывание — это событие, которое происходит из-за внешнего компонента, такого как таймеры, для уведомления ЦПУ о выполнении определенного действия.

Ключевые области покрыты

1. Что такое сигнал
— определение, функциональность
2. Что такое прерывание
— определение, функциональность
3. Каковы сходства между сигналом и прерыванием
— Краткое описание общих черт
4. В чем разница между сигналом и прерыванием
— Сравнение основных различий

Основные условия

Процессор, прерывание, сигнал

Что такое сигнал

Сигнал — это событие, которое запускается процессором. Это может быть прерывание, вызванное программным обеспечением, работающим на процессоре. Это называется программным прерыванием. Это также может быть аппаратное обеспечение процессора, которое запускает определенные события. Кроме того, сигналы основаны на операционной системе. Поэтому две системы с разными операционными системами будут генерировать разные сигналы.

Кроме того, существуют синхронные сигналы, а также асинхронные сигналы. Синхронные сигналы возникают в ответ на конкретное действие, которое произошло, и ЦП будет реагировать на это действие. С другой стороны, в асинхронных сигналах нет прямой реакции на конкретное действие, которое произошло.

Что такое прерывание

Прерывание — это событие, которое происходит извне другими компонентами, кроме процессора. Он уведомляет процессор о каком-то внешнем событии. Устройство ввода-вывода, такое как сетевое устройство, может отправить прерывание, чтобы указать принятые пакеты данных. Кроме того, таймер может уведомить ЦП о событии тайм-аута. Прерывание зависит от физической платформы и конфигурации этой платформы. Следовательно, две идентичные платформы будут иметь одинаковое прерывание. Кроме того, прерывания происходят асинхронно.

Сходства между сигналом и прерыванием

  • Сигналы и прерывания имеют уникальные идентификаторы.
  • Оба могут быть замаскированы. Они помогают отключить или приостановить уведомление о доставке сигнала или прерывания.

Разница между сигналом и прерыванием

Определение

Сигнал — это событие, которое запускается процессором или программным обеспечением, которое работает на процессоре. Напротив, прерывание — это событие, которое запускается внешними компонентами, отличными от ЦП, которое предупреждает ЦП о выполнении определенного действия. Основное различие между сигналом и прерыванием явно из этих определений.

зависимость

Хотя сигнал зависит от платформы, прерывание зависит от операционной системы. Таким образом, это важное различие между сигналом и прерыванием.

Тип сигнала

Другое различие между сигналом и прерыванием состоит в том, что сигнал может быть синхронным или асинхронным, тогда как прерывание является асинхронным.

маскировать

Кроме того, сигнал использует маску сигнала для каждого процесса, в то время как прерывание использует маску прерывания до ЦП.

Ассоциация с процессором

ЦП посылает сигналы процессам, тогда как ЦП получает прерывания от внешних компонентов. Это еще одно различие между сигналом и прерыванием.

Заключение

Разница между сигналом и прерыванием заключается в том, что сигнал — это событие, которое запускается процессором или программным обеспечением, которое запускается на процессоре, а прерывание — это событие, которое запускается внешним компонентом, отличным от процессора.

Ссылка:

1. «Введение в прерывания и сигналы», Udacity, 23 февраля 2015 г.,

Источник

Аппаратные прерывания Контроллер прерываний

АППАРАТНОЕ ПРЕРЫВАНИЕ КЛАВИАТУРЫ

Клавиатура IBM PC работает следующим образом: всякий раз, когда Вы нажимаете или отпускаете клавишу, встроенное в клавиатуру устройство запоминает в своей встроенной памяти один байт. Этот байт содержит код нажатия или отпускания (соответственно 1 и 0) в седьмом бите и идентификатор клавиши, или scan-код, в остальных битах. Всего возможно 83 scan-кода, по одному для каждой клавиши клавиатуры. После того как встроенное в клавиатуру устройство запомнило какие-либо данные в своей памяти, оно посылает системе BIOS IBM PC прерывание типа 9, сообщающее, что у него есть данные для передачи.

Память клавиатуры способна хранить до 20 байтов, или до 10 операций нажатия и отпускания (т.е. ударов по клавишам). Это позволяет Вам набирать текст даже в то время, когда микропроцессор ЭВМ занят, например выдает содержимое экрана на принтер.

Если прерывания разрешены, то процедура обработки прерывания типа 9 KB_INT входящая в состав системы BIOS, считает байты из памяти клавиатуры и преобразует их в коды символов. Частью процесса преобразования является проверка того, не было ли некоторых нажатий без последующего отпускания; это позволяет формировать коды символов, отражающие удерживание в нажатом состоянии регистровых клавиш Shift, Ctrl или Alt во время нажатия на другую клавишу. По завершении работы процедура обработки прерывания типа 9 запоминает scan-код и код символа в буфере клавиатуры, находящимся в памяти ЭВМ.

Этот буфер рассчитан на сохранение результатов 15 ударов по клавишам; при таком размере буфера скорость работы программного обеспечения позволяет успевать за самыми быстрыми машинистками. Но если Вам вдруг удастся нажать на клавишу в то время, когда буфер полон, то система BIOS проигнорирует эту клавишу и выдаст звуковой сигнал.

Расширенная система ASCII

Ранее уже упоминалось, что клавиатура IBM PC имеет так много клавиш и настолько отличается от стандартной клавиатуры ЭВМ, что для представления генерируемых ею кодов символов не хватает стандартного набора из 128 ASCII-кодов. Всего в IBM PC предусмотрено 256 кодов, называемых фирмой IBM расширенной системой ASCII.

Расширенные коды

Когда Вы запрашиваете чтение символа с клавиатуры, система BIOS возвращает ASCII-код этого символа и его scan-код в регистрах AL и AH соответственно. Другие (“не ASCII”) клавиши возвращают 0 и в регистре AL и расширенный код в регистре AH. Обратите внимание на то, что расширенные коды в интервале 3-53 соответствуют scan-кодам.

Специальные комбинации клавиш

Следующие комбинации клавиш вызывают специальные действия:

Alt-Ctrl-Del вызывает рестарт или “перевызов” ОС ЭВМ.

Ctrl-Break инициирует прерывание типа 1B (клавиша прерывания). Эта комбинация клавиш возвращает 0 в регистрах AL и AH.

Ctrl-NumLock заставляет ЭВМ ждать, пока Вы не нажмете какую либо клавишу, отличную от клавиши NumLock. Это даст Вам возможность приостановить операцию (например, распечатку программы), а за тем возобновить ее исполнение.

Shift-PrtSc инициирует прерывание типа 5 (печать содержимого экрана).

Процедура BIOS, обслуживающая клавиатуру воспринимает клавиши Ctrl, Shift, NumLock, ScrollLockиIns как управляющие.

Программа обработки прерывания типа 16 (обмен данными с клавиатурой) возвращает байт состояния регистровых клавиш, который сообщает о том, какие из этих клавиш были нажаты.

АППАРАТНОЕ ПРЕРЫВАНИЕ КЛАВИАТУРЫ

Клавиатура подключена к линии прерывания IRQ1. Этой линии соответствует прерывание INT 09h. Клавиатурное прерывание обслуживается модулями BIOS. Драйверы клавиатуры и резидентные программы могут организовывать дополнительную работу прерывания INT 09h. Для этого может быть использована цепочка обработчиков прерывания. В первой книге первого тома мы приводили примеры расширения обработчиков прерывания INT 09h.

Как работает стандартный обработчик клавиатурного прерывания, входящий в состав BIOS?

Этот обработчик выполняет следующие действия:

– читает из порта 60h скан-код нажатой клавиши;

– записывает вычисленное по скан-коду значение ASCII-кода нажатой клавиши в специальный буфер клавиатуры, расположенный в области данных BIOS;

– устанавливает в 1 бит 7 порта 61h, разрешая дальнейшую работу клавиатуры;

– возвращает этот бит в исходное состояние;

– записывает в порт 20h значение 20h для правильного завершения обработки аппаратного прерывания.

Обработчик прерывания INT 09h не просто записывает значение ASCII-кода в буфер клавиатуры. Дополнительно отслеживаются нажатия таких комбинаций клавиш, как Ctrl-Alt-Del, обрабатываются специальные клавиши PrtSc и SysReq. При вычислении кода ASCII нажатой клавиши учитывается состояние клавиш Shift и CapsLock.

Буфер клавиатуры имеет длину 32 байта и расположен по адресу 0000h:041Eh для машин IBM PC/XT.

В IBM AT и PS/2 расположение клавиатурного буфера задается содержимым двух слов памяти с адресами 0000h:0482h (компонента смещения адреса начала буфера). Обычно в IBM AT эти ячейки содержат значения соответственно 001Eh и 003Eh. Так как смещения заданы относительно сигментного адреса 0040h, то видно, что обычное расположение клавиатурного буфера в IBM AT и PS/2 соответствует его расположению в IBM PC/XT.

Клавиатурный буфер организован циклически. Это означает, что при его переполнении самые старые значения будут потеряны. Две ячейки памяти, находящиеся в области данных BIOS с с адресами 0000h:041Ah и 0000h:041Ch, содержат соответственно указатели на начало и конец буфера. Если значения этих указателей равны друг другу, буфер пуст (можно удалить все символы из буфера клавиатуры, установив оба указателя на начал буфера. Однако есть более предпочтительный способ с использованием прерывания BIOS INT 16h).

Указателями на начало и конец клавиатурного буфера обычно управляют обработчики прерываний INT 09h и INT 16h.

Программа извлекает из буфера коды нажатых клавиш, используя различные функции прерывания INT 16h.

Помимо управления содержимым буфера клавиатуры, обработчик прерывания INT 09h отслеживает нажатия на так называемые переключающие клавиши — NumLock, ScrollLock, CapsLock, Ins. Состояние этих клавиш записывается в область данных BIOS в два байта с адресами 0000h:0417h и 0000h:0418h.

Формат байта 0000h:0417h:

Биты Значение
Нажата правая клавиша Shift
Нажата левая клавиша Shift
Нажата комбинация клавиш Ctrl-Shift с любой стороны
Нажата комбинация клавиш Alt-Shift с любой стороны
Состояние клавиши ScrollLock
Состояние клавиши NumLock
Состояние клавиши CapsLock
Состояние клавиши Insert

Формат байта 0000h:0418h:

Биты Значение
Нажата левая клавиша Shift вместе с клавишей Ctrl
Нажата левая клавиша Shift вместе с клавишей Alt
Нажата клавиша SysReq
Состояние клавиши Pause
Нажата клавиша ScrollLock
Нажата клавиша NumLock
Нажата клавиша CapsLock
Нажата клавиша Insert

Если вы меняете состояние светодиодов на панели клавиатуры, не забывайте устанавливать соответствующие биты в байтах состояния клавиатуры.

Программой обработки прерывания INT 09h отслеживаются некоторые комбинации клавиш. В таблице приведены эти комбинации и действия, выполняемые обработчиком прерывания при их обнаружении:

Комбинации клавиш Выполняемые действия
Ctrl-Alt-Del Сброс и перезагрузка системы
Ctrl-NumLock, Pause Перевод машины в состояние ожидания до нажатия любой клавиши
Shift-PrtSc Распечатка на принтере содержимого видеопамяти
Ctrl-Break Выполнение прерывания INT 1Bh, завершающего работу программы

Многие типы клавиатур имеют отдельную альтернативную цифровую панель, напоминающую клавиатуру калькулятора. Если одновременно с нажатием на клавишу Alt набрать число на этой панели (не большее чем 255 и не равное 0), то это число будет помещено в буфер клавиатуры, как будто бы оно было введено нажатием на одну клавишу. Это число будет также записано в слове по адресу 0000h:0419h в области данных BIOS.

При переполнении внутреннего буфера клавиатуры или буфера, расположенного в области данных BIOS программа-обработчик прерывания INT 09h генерирует звуковой сигнал.

При составлении программ для MS-DOS у Вас едва ли появится необходимость непосредственного манипулирования содержимым буфера клавиатуры – Вы можете использовать прерывание BIOS INT 16h для выполнения практически всех клавиатурных операций.

В следующем разделе мы займемся непосредственно изучением средств работы с клавиатурой, предоставляемых в распоряжение прерыванием BIOS INT 16h.

Источник



Реализация обработчика прерывания клавиатуры в окружении DOS

Резидентный перехватчик аппаратного прерывания клавиатуры для ДОС.

Cover Image

Сегодня мы рассмотрим, как написать простейший перехватчик прерывания под ДОС. Зачем это надо в наше время? Ответ прост — для того, чтобы лучше разобраться как работает машина на низком уровне, общего развития и расширения кругозора, ну и некоторым для написания курсачей. Возможно этот материал будет полезен желающим попробовать написать свою ОС — почему бы и нет?

Интересно? Мы начинаем!

Термины и определения

Прерывание – реакция процессора на внешнее событие, при котором приостанавливается выполнения потока команд ЦП (центральный процессор) и управление передается специальному куску кода, называемому обработчиком прерывания.

Читайте также:  Процессор управления Extron 60 1418 01A IPCP Pro 550 серии IP Link Pro w LinkLicense

Программное прерывание – прерывание, при котором обработчик вызывается не по внешнему событию, а напрямую из основной программы. Таким образом, можно реализовать набор часто используемых подпрограмм (так работает DOS ( int 21h )).

Перехват прерывания – подмена системного обработчика прерывания собственным, с целью модификации алгоритма работы обработчика прерывания, либо реализации собственного обработчика.

Вектор прерывания – адрес ячейки памяти в которой находится адрес точки входа в обработчик прерывания (аналог указателей в Си).

Резидентная программа – программа, которая находится в памяти постоянно и управление ей передается по прерываниям, либо иным способом (можно напрямую сделать jmp, если известна точка входа в резидент (сегмент и смещение)). Резидент состоит из блока инициализации, в котором происходит инициализация векторов обрабатываемых прерываний и прочие процедуры, необходимые для установки резидентной программы, и соственно кода обработчика прерывания.

Постановка задачи

С терминами разобрались – поехали разбираться с тем, что нам предстоит сделать. А будем делать мы резидентный перехватчик аппаратного прерывания клавиатуры для ДОС. Алгоритмы обработчика могут быть разными – это и будет «домашним заданием» и полем для экспериментов. На них останавливаться не будем – нам важны сами принципы написания такого драйвера. Об этом и продолжим.

Что нужно иметь ввиду: т.к. речь идет про ДОС, нужно понимать, что это однозадачная система (что нам на руку), т.е. никакой другой процесс (поток выполнения) не может поменять значения регистров, которые мы будем использовать в нашей программе, а это очень круто! Сразу естественный вопрос: если система однозадачная – каким образом обеспечить выполнение нашей программы в фоне (именно так «обязаны» работать драйверы)? Ответ прост – пишем резидент! Для начала определимся с планом действий, т.е. что нам нужно сделать – это определит структуру нашей программы.

  1. Запомнить системный (досовский) вектор прерывания клавиатуры;
  2. Установить этот вектор на свой обработчик;
  3. Реализовать обработчик (сам алгоритм);
  4. Остаться работать в фоне и запускать обработчик по возникновению прерывания от клавиатуры.

Структура программы на ассемблере

Уточню сразу: все нижеизложенное будет касаться ассемблеров TASM и MASM (сам использую TASM). У других ассемблеров синтаксис отличается и надо читать документацию. Для начала рассмотрим шапку программы. Выглядит она следующим образом:

Здесь нас интересует модель памяти. Дело в том, что ДОС поддерживает несколько моделей памяти: tiny , small , medium , large , huge и flat (винда). Модель памяти – способ организации сегментации памяти: сколько каких сегментов используется и какие устанавливаются между ними взаимоотношения. Нас интересует tiny – когда все сегменты (кода, данных, стека и т.п.) имеют один и тот же сгментный адрес. После ключевого слова .data описываем переменные – тут у нас будет адрес системного обработчика, текстовые сообщения и переменные, используемые в алгоритме обработчика. Переменные записываются следующим образом:

Что это такое? Для начала, разберемся с «типами данных». Тут использованы два типа: db – байт и dw – слово. Как несложно догадаться, в слове у нас 16 бит, а в байте 8. Первая запись, с текстовой строкой – массив байт. Т.е. по адресу, по которому он будет находиться, будет шутливое предложение про кошку, затем два байта – 10 и 13 (ASCII коды символов «перенос строки» и «возврат каретки») и знак доллара. Знак доллара нам нужен для функции 09h программного прерывания ДОС ( int 21h ) – это метка конца текстовой строки. Во второй строке резервируется слово в памяти для хранения сегмента (обычное число). Ну и третья строка – обычная переменная, с инициализированым значением – типа счетчик. С основами разобрались. Теперь рассмотрим функции программного прерывания ДОС ( int 21h ), которые нам пригодятся для реализации задуманного. Поехали (тут должна быть картинка с Гагариным).

INT 21h функция 09h

Вывод текстовой строки.

ВХОД: AH – 09h DX – смещение в сегменте данных (в нашем случае совпадает с сегментом кода) текстовой строки, завершающейся символом $ . Пример:

Все, теперь открываем пиво (чай, молоко, кумыс – по вкусу) – мы написали свой первый «хеллоуворлд». Откладываем кумыс в сторону, идем дальше.

INT 21h функция 02h

Функция выводит один символ на экран. Можно использовать для вывода служебных кодов ASCII.

ВХОД: AH – 02h DL – выводимый символ

INT 21h функция 4Сh

Тут мы просто выходим в ДОС и сообщаем ДОСу код завершения (применяется в BAT-файлах). Аналогично с return в Си.

ВХОД: AH – 4Ch AL – код завершения программы

INT 21h функция 35h

После вызова этой функции в регистрах ES и BX окажутся, соответственно, сегмент и смещение обработчика прерывания. Это нам пригодится для корректной передачи управления в ДОС после выполнения нашего алгоритма.

ВХОД: AH – 35h AL – номер прерывания ВЫХОД: ES – сегмент обработчика прерывания BX – смещение обработчика прерывания

INT 21h функция 25h

Эта функция устанавливает новый обработчик прерывания. Пользоваться надо очень осторожно и обдуманно, дабы не отстрелить себе очередную ногу.

ВХОД: AH – 25h AL – номер прерывания DS – сегмент обработчика прерывания DX – смещение обработчика прерывания

INT 27h

Завершиться, но остаться резидентным

ВХОД: DX – адрес первого байта за резидентным участком программы ВНИМАНИЕ, АХТУНГ, АЛЯРМ! Не 21, а 27! Да-да, именно 27. Эта функция завершает программу, оставляя резидентную часть (обработчик прерывания) в памяти. Т.е. она, по сути, информирует ДОС, что эта область памяти занята и писать туда ничего нельзя, дабы не затереть обработчик.

Теперь перейдем к коду

Напишем скелет нашего резидента.

С первыми тремя строками ясно – это шапка программы.

В пятой строке управление передается на код с меткой Init . Важно отметить, что в коде обработчик прерывания в коде располагается раньше модуля инициализации резидента – это обусловлено работой программного прерывания int 27h , в противном случае ДОС затрет обработчик, что приведёт к отстрелам ног пулеметными очередями.

С 10-й по 14-ю строку – собственно сам обработчик. Мы просто выводим на экран букву А (см. выше) и перепрыгиваем на системный обработчик прерывания 09h , чтоб не нарушать работу ДОСа и других программ, вызываемых из него.

Самое интересное тут происходит в строках 17-28, это инициализация резидента. Сначала мы выводим приветственное сообщение (17-19), затем сохраняем значение вектора системного прерывания 09h (20-23), устанавливаем свой обработчик (24-26) и выходим, оставляя резидентную часть программы в памяти (27-28).

Кульбит с адресом системного обработчика прерывания 09h (22-23) обусловлен устройством памяти у Intel . Дело в том, что Intel использует организацию памяти «младшим-вперед» — это значит, что физически первым передается младший байт ( little-endian ). Т.к. мы передаем указатель в виде СЕГМЕНТ:СМЕЩЕНИЕ , то нам надо это учитывать и передавать адрес в том виде, как это принято.

Подробнее c порядком байтов можно познакомиться тут — Википедия, да-да, именно там

Ну вот и все – мы написали наш первый резидент под ДОС. Можно вновь доставать кумыс и насладиться им в полной мере – мы это заслужили.

Реализацию алгоритма отдаю на откуп читателю, намекнув лишь, что при возникновении прерывания скан-код нажатой клавиши будет находится в порту по адресу 60h (читать – in ax, 60h ).

Так же, при нажатии и отпускании клавиши возвращается 2 сканкода, т.е. прерывание будет вызвано дважды. Наш резидент, описанный в примере выведет две буквы А вместо одной.

Источник

Аппаратные прерывания IRQ

Думаю, многие любознательные пользователи, наверняка не раз встречали такое сокращение, как IRQ. Его можно встретить, например, если вы любите заглядывать в программу «Менеджер устройств» в Windows. Если вы выберете любое устройство, к примеру, клавиатуру, выберете при помощи правой кнопки мыши пункт меню «Свойства», и в появившемся окне сделаете активной закладку «Ресурсы», то в списке ресурсов вы увидите надпись IRQ 01.

IRQ прерывания

Для чего нужны IRQ

Что же такое IRQ и для чего оно нужно?

Аббревиатура IRQ расшифровывается как Interrupt ReQuest (запрос на прерывание). Для того, чтобы понять, для чего оно нужно, следует вспомнить подробности организации работы персонального компьютера.

Кровеносной системой компьютера, по которой обмениваются информацией процессор и прочие устройства, является системная шина. Но как вообще процессор способен отличить запросы на обработку информации, поступающие по шине от различных устройств?

Читайте также:  Системные требования распространенных версий Windows

Для этого и существует система аппаратных прерываний (IRQ). Каждое прерывание имеет определенный номер (нумерация начинается с 0) и закреплено за определенным устройством. Так, за клавиатурой закреплено прерывание под номером 1, отсюда и обозначение IRQ 01.

При поступлении запроса от устройства компьютер прерывает (отсюда и появился сам термин «прерывание») обработку текущей информации и начинает обработку вновь поступившего. Если прерываний несколько, то они обрабатывается в порядке приоритетов, закрепленных за каждым из них. Как правило, чем меньше номер прерывания, тем больший приоритет для процессора имеет устройство, закрепленное за этим прерыванием, но это правило соблюдается далеко не всегда.

Обслуживает обработку IRQ специальный чип, который носит название контроллера прерываний. Как правило, эта микросхема является частью центрального процессора, а иногда выделяется в отдельный чип на материнской плате. Для обработки каждого прерывания в BIOS существует специальная микропрограмма, называемая обработчиком прерывания. Адреса всех обработчиков хранятся в так называемой таблице векторов прерываний.

Раньше, в первых компьютерах семейства XT была распространена 8-разрядная шина ISA, поэтому всего устройствам было доступно 8 прерываний. С появлением 16-разрядной шины ISA их количество увеличилось до 16.

Настройка Interrupt ReQuest

Надо сказать, что прерывания, закрепленные за некоторыми устройствами, не является фиксированными и их можно изменить программно. Например, IRQ стандартно использующееся последовательным портом Com 2, может использовать и устанавливаемый в слот расширения модем. В современных компьютерах и операционных системах, поддерживающих стандарт PnP и работающих под управлением ОС Windows, значения IRQ для устройств, подключаемых в слоты шины, подбираются автоматически.

Но не все было так просто в прежние времена, когда пользователь должен был вручную устанавливать значение IRQ во многих программах, работавших под операционной системой DOS. Например, при установке в систему звуковой карты, пользователю требовалось выбрать свободное прерывание из очень небольшого числа доступных (как правило, это было IRQ 5) и указать это значение в запускаемой программе, например, в какой-нибудь игре.

Во многих BIOS имеется возможность поменять стандартные значения IRQ в программе Setup. Обычно эта опция располагается в разделах IRQ Resources или PCI/PNP Configuration.

Установка для устройства значения IRQ, равного значению IRQ, уже занятого каким-либо устройством в большинстве случаев приводит к неработоспособности одного из этих устройств или сразу обоих, а иногда чревато и зависанием компьютера.

В более современной шине PCI система управления прерываниями была кардинально изменена, а возможности управления прерываниями были расширены. Благодаря технологии IRQ Sharing, а также технологии ACPI стало возможным размещение нескольких устройств на одном канале прерывания, а у внешних устройств, подключаемых в слоты PCI, появилась возможность автоматического распределения ресурсов между собой.

Кроме того, в современных компьютерах обычно используется расширенный программируемый контроллер прерываний (APIC, Advanced Programmable Interrupt Controller), поддерживающий 24 канала Interrupt ReQuest. Расширенный контроллер прерываний выполнен в виде двух микросхем, одна из которых расположена в самом процессоре, а другая на материнской плате. Этот контроллер прерываний впервые появился в системах на основе процессоров Pentium. Однако при этом была оставлена поддержка старой системы прерываний в целях совместимости. Очередным шагом в развитии принципов обработки прерываний является технология Message Signaled Interrupts, поддержка которой появилась в линейке ОС Windows, начиная с Windows Vista.

Не следует путать аппаратные прерывания IRQ c программными прерываниями BIOS, о которых речь пойдет в отдельной статье. Программные прерывания BIOS, как правило, используются для организации работы программного обеспечения с устройствами ввода-вывода и обозначаются при помощи сокращения INT. Многие из них аналогичны по своим функциям аппаратным IRQ, но имеют при этом другие номера.

Список номеров Interrupt ReQuest в стандартной схеме для 16-битной шины ISA:

  1. Системный таймер
  2. Клавиатура
  3. Дополнительный контроллер прерываний (для совместимости с 8-битной шиной)
  4. Порты Com 1 и 3
  5. Порты Com 2 и 4
  6. Свободно (в 8-битной шине — контроллер жесткого диска)
  7. Контроллер гибких дисков (FDD)
  8. Параллельный порт LPT
  9. Часы реального времени CMOS
  10. Совмещено с IRQ 2
  11. Свободно
  12. Свободно
  13. Порт мыши PS/2
  14. Сопроцессор (в настоящее время практически не используется)
  15. Первый контроллер IDE
  16. Второй контроллер IDE

Список дополнительных номеров IRQ, которые использует расширенный контроллер прерываний APIC:

  1. Контроллер USB
  2. Интегрированная звуковая подсистема (AC’97 или HDA)
  3. Контроллер USB
  4. Контроллер USB
  5. Встроенная сетевая карта
  6. Свободно
  7. Свободно
  8. Контроллер USB 2.0

Соответствие номеров IRQ и прерываний BIOS:

Таблица IRQ и INT

Заключение

Итак, в этой статье вы смогли узнать, что означает сокращение IRQ, и что представляют собой аппаратные прерывания. Они являются встроенным механизмом распределения ресурсов компьютера и предназначены для организации доступа устройств к центральному процессору. Правильное распределение и настройка IRQ позволяет избежать конфликтов между устройствами и обеспечить стабильную работу системы.

Источник

Аппаратные прерывания. Контроллер прерываний

Прерывание означает временное прекращение основного процесса вычислений для выполнения некоторых запланированных или незапланированных действий, вызываемых работой аппаратуры или программы. Т.е. это процесс, временно переключающий микропроцессор на выполнение другой программы с последующим возвратом к прерванной программе. Нажимая клавишу на клавиатуре, мы инициируем немедленный вызов программы, которая распознает клавишу, заносит ее код в буфер клавиатуры, из которого он считывается другой программой. Т.е. на некоторое время микропроцессор прерывает выполнение текущей программы и переключается на программу обработки прерывания, так называемый обработчик прерывания. После того, как обработчик прерывания завершит свою работу, прерванная программа продолжит выполнение с точки, где было приостановлено ее выполнение. Адрес программы-обработчика прерывания вычисляется по таблице векторов прерываний.

Механизм прерываний поддерживается на аппаратном уровне. В зависимости от источника, прерывания делятся на:

  • аппаратные — возникают как реакция микропроцессора на физический сигнал от некоторого устройства (клавиатура, системные часы, клавиатура, жесткий диск и т.д.), по времени возникновения эти прерывания асинхронны, т.е. происходят в случайные моменты времени;
  • программные — вызываются искусственно с помощью соответствующей команды из программы (int), предназначены для выполнения некоторых действий операционной системы, являются синхронными;
  • исключения — являются реакцией микропроцессора на нестандартную ситуацию, возникшую внутри микропроцессора во время выполнения некоторой команды программы (деление на ноль, прерывание по флагу TF (трассировка)) [1].

Аппаратные средства системы прерываний

Система прерываний — это совокупность программных и аппаратных средств, реализующих механизм прерываний.

К аппаратным средствам системы прерываний относятся:

  • выводы микропроцессора — на них формируются сигналы, извещающие микропроцессор либо о том, что некоторое внешнее устройство «просит уделить ему внимание» (INTR), либо о том, что требуется безотлагательная обработка некоторого события или катастрофическая ошибка (NMI)
  • INTR — вывод для входного сигнала запроса на прерывание,
  • NMI — вывод для входного сигнала немаскируемого прерывания
  • INTA — вывод для выходного сигнала подтверждения получения сигнала прерывания микропроцессором (этот сигнал поступает на одноименный вход микросхемы контроллера 8259А;
  • программируемый контроллер прерываний 8259А (предназначен для фиксирования сигналов прерываний от восьми различных внешних устройств; он выполнен в виде микросхемы; обычно используют две последовательно соединенные микросхемы, поэтому кол-во возможных источников внешних прерываний до 15 плюс одно немаскируемое прерываний; именно он формирует номер вектора прерывания и выдает его шину данных);
  • внешние устройства (таймер, клавиатура, магнитные диски и т.п.)

Обработка прерываний

Прерывание вызывает ряд событий, которые происходят как в аппаратном, так и в программном обеспечении. На рис. 1 показана типичная последовательность этих событий.

После завершения работы устройства ввода-вывода происходит следующее:

  • Устройство посылает процессору сигнал прерывания.
  • Перед тем как ответить на прерывание, процессор должен завершить исполнение текущей команды (см. рис. 1).
  • Процессор производит проверку наличия прерывания, обнаруживает его и посылает устройству, приславшему это прерывание, уведомляющий сигнал об успешном приеме. Этот сигнал позволяет устройству снять свой сигнал прерывания.

Теперь процессору нужно подготовиться к передаче управления обработчику прерываний. Сначала необходимо сохранить всю важную информацию, чтобы в дальнейшем можно было вернуться к тому месту текущей программы, где она была приостановлена. Минимальная требуемая информация — это слово состояния программы и адрес очередной выполняемой команды, который находится в программном счетчике. Эти данные заносятся в системный управляющий стек.

Обработка простого прерыванияРисунок 2. Обработка простого прерывания

Далее в программный счетчик процессора загружается адрес входа программы обработки прерываний, которая отвечает за обработку данного прерывания. В зависимости от архитектуры компьютера и устройства операционной системы может существовать как одна программа для обработки всех прерываний, так может быть и своя программа обработки для каждого устройства и каждого типа прерываний. Если для обработки прерываний имеется несколько программ, то процессор должен определить, к какой из них следует обратиться. Эта информация может содержаться в первоначальном сигнале прерывания; в противном случае для получения необходимой информации процессор должен по очереди опросить все устройства, чтобы определить, какое из них отправило прерывание.

Читайте также:  Cyberpunk 2077 на процессорах AMD Ryzen 8212 оптимизация скорости

Как только в программный счетчик загружается новое значение, процессор переходит к следующему циклу команды, приступая к ее извлечению из памяти. Так как команда извлекается из ячейки, номер которой задается содержимым программного счетчика, управление переходит к программе обработки прерываний. Исполнение этой программы влечет за собой следующие операции.

Содержимое программного счетчика и слово состояния прерываемой программы уже хранятся в системном стеке. Однако это еще не вся информация, имеющая отношение к состоянию исполняемой программы. Например, нужно сохранить содержимое регистров процессора, так как эти регистры могут понадобиться обработчику прерываний. Поэтому необходимо сохранить всю информацию о состоянии программы. Обычно обработчик прерываний начинает свою работу с записи в стек содержимого всех регистров. Другая информация, которая должна быть сохранена, обсуждается в главе 3, «Описание процессов и управление ими». На рис. показан простой пример, в котором программа пользователя прерывается после выполнения команды из ячейки N. Содержимое всех регистров, а также адрес следующей команды (N+1), в сумме составляющие М слов, заносятся в стек. Указатель стека при этом обновляется, указывая на новую вершину стека. Обновляется и программный счетчик, указывая на начало программы обработки прерывания.

Теперь обработчик прерываний может начать свою работу. В процесс обработки прерывания входит проверка информации состояния, имеющая отношение к операциям ввода-вывода или другим событиям, вызвавшим прерывание. Сюда может также входить пересылка устройствам ввода-вывода дополнительных инструкций или уведомляющих сообщений.

После завершения обработки прерываний из стека извлекаются сохраненные ранее значения, которые вновь заносятся в регистры, возобновляя таким образом то состояние, в котором они пребывали до прерывания.

Последний этап — восстановление из стека слова состояния программы и содержимого программного счетчика. В результате следующей будет выполняться команда прерванной программы.

Из-за того, что прерывание не является подпрограммой, вызываемой из программы, для полного восстановления важно сохранить всю информацию состояния прерываемой программы. Однако прерывание может произойти в любой момент и в любом месте программы пользователя. Это событие непредсказуемо [2].

Контроллер прерываний

Контроллер прерываний предназначен для обработки и арбитража поступающих запросов на обслуживание к центральному процессору от переферийных устройств. По аналогии функции контроллера прерываний можно сравнить с секретарём какого–нибудь начальника. Секретарь должен решить, кого из посетителей допустить к боссу в первую очередь, а кого и потом, исходя из приоритетов, отдаваемых боссом и статуса самого посетителя. Так и в компьютерной системе, возможна такая ситуация, когда несколько переферийных устройств послали сигнал прерывания или запрос на прерывание. В компьютерной литературе этот сигнал обозначается IRQ (Interrupt Request).

Как уже выше говорилось, прерывания имеют определённый приоритет, который позволяет контроллеры прерываний отдавать предпочтение в данный момент времени одному устройству, а не другому. В современном компьютере существует до 16 внешних и периферийных устройств, генерирующие прерывания. Вот эти устройства:
–IRQ 0, системный таймер; –IRQ 1, клавиатура; –IRQ 2, исползуется для запросов устройств, подключенных каскадом; –IRQ 8, часы реального времени; –IRQ 9, зарезервировано; –IRQ 10, зарезервировано; –IRQ 11, зарезервировано; –IRQ 12, ps/2–мышь; –IRQ 13, сопроцессор; –IRQ 14, контроллер «жёсткого» диска; –IRQ 15, зарезервировано; –IRQ 3, порты COM2,COM4; –IRQ 4, порты COM1,COM3; –IRQ 5, порт LPT2; –IRQ 6, контроллер дисковода; –IRQ 7, порт LPT1,принтер.

Здесь сигналы приведены в порядке убывания приоритетов. Можно заметить, что после IRQ 2, следует IRQ 8. Дело в том, что в своё время контроллер прерываний состоял из двух микросхем, одна была подключена к другой. Вот эта вторая микросхема и подключается к линии IRQ 2, образуя каскад. Она обслуживает линии IRQ8–IRQ 15. А затем следуют линии первой микросхемы [3].

Работа контроллера прерывания

Работа контроллеов прерываний рассматривается на основе микросхем фирмы Intel 8259A, которые применялись в теперь уже очень старых компьютерах с процессорами до 386 серии. В этих компьютерах обычно было 2 микросхемы 8259A, подключенных каскадно, то–есть одна к другой. Одна из микросхем, подключенная по линии запроса на прерывание непосредственно к процессору является ведущей или мастером. Остальные,подключаются к ведущей через аналогичные выводы, называются ведомыми.

Схема подключения контроллеров прерываний и их взаимодействие с центральным процессоромРисунок 3. Схема подключения контроллеров прерываний и их взаимодействие с центральным процессором

На рисунке 3 изображена схема подключения контроллеров прерываний и их взаимодействие с центральным процессором. Сигналы на прерывание от переферийных устройств или ведомых контроллеров поступают на входы IR0–IR7 ведущего контроллера. Внутренняя логика ведущего контроллера обрабатывает поступившие запросы с точки зрения приоритета. Если приоритет запроса устройства достаточен, то на выходе INT контроллера вырабатывается сигнал, поступающий на вход INTR процессора. В противном случае, запрос блокируется.

Если процессор разрешает прерывания, то после завершения выполнения текущей команды, он вырабатывает по линии INTA последовательность сигналов, которая переводит ведомый контроллер в состояние невосприимчивости к поступающим новым запросам на прерывание, а кроме того, на линию данных выводится информация из внутренних регистров контроллера по которой процессор распознаёт тип прерывания.

Разрешение на прерывание процессор передаёт контроллеру прерываний через контроллер шины. Сигнал RD предназначен для того, чтобы контроллер прерываний поместил на шину данных содержимое внутренних регистров. По сигналу WR контроллер прерываний, наоборот, принимает данные с одноимённой шины и записывает их во внутренние регистры. Соответственно, это влияет на режим работы контроллера прерываний.

Вход CS подключается к шине адреса и по этому сигналу происходит идентификация конкретного контролллера прерываний. Вход A0 указывает на порт контроллера прерываний в пространстве ввода–вывода.

Входы IR0–IR7 предназначены для приёма запросов на прерывание от переферийных устройств и ведомых контроллеров.

Выходы CAS0–CAS2 предназначены для идентификации конкретного ведомого контроллера [4].

В статье рассмотрены аппаратные прерывания и устройство, функции, работу контроллера прерываний. Данный контроллер прерываний появился ещё в первых PC–совместимых компьютерах. С тех пор, и процессоры, и сам компьютер во многом изменились, хотя некоторые моменты остались. Поэтому, для того, чтобы было понятней и была рассмотрена организация контроллера прерываний 8295A.

На приведенной выше схеме показаны сигналов приходящие не только на ведомый и ведущий контроллеры прерываний, но и на остальные ведомые. Однако на вашем компьютере или ноутбуке на самом деле 2 контроллера прерываний, как выше указывалось: ведущий и ведомый. Но можно создавать свои компьютерные системы, используя таким образом до 64 ведомых контроллеров прерываний.

В современных компьютерах уже давно функции контроллера прерываний выполняют не микросхемы 8259A, а южный мост. Однако, для всех программ и устройств всё остаётся по–прежнему. Более того, контроллер прерываний можно программировать, и обращаться к внутренним регистрам и портам необходимо точно также, как и к контроллеру 8259A [5].

Заключение

В данной работе были рассмотрены прерывания, а именно аппаратные средства обработки прерываний и принцип обработки прерываний. Также рассмотрены контроллеры прерываний и принцип их работы.

Прерывание означает временное прекращение основного процесса вычислений для выполнения некоторых запланированных или незапланированных действий, вызываемых работой аппаратуры или программы. Механизм прерываний поддерживается на аппаратном уровне. Аппаратные прерывания возникают как реакция микропроцессора на физический сигнал от некоторого устройства (клавиатура, системные часы, клавиатура, жесткий диск и т.д.), по времени возникновения эти прерывания асинхронны, т.е. происходят в случайные моменты времени.

Контроллер прерываний предназначен для обработки и арбитража поступающих запросов на обслуживание к центральному процессору от переферийных устройств. Прерывания имеют определённый приоритет, который позволяет контроллеру прерываний отдавать предпочтение в данный момент времени одному устройству, а не другому. В современном компьютере существует до 16 внешних и переферийных устройств, генерирующие прерывания.

Список литературы

  1. Лекция. Прерывания. Эл. Ресурс. http://hromatron.narod.ru/_lekcii/prerivania_lekcia_g2013.htm
  2. Системные прерывания | Аппаратное прерывание | Обработка прерываний http://life-prog.ru/view_os.php?id=16
  3. Контроллер прерываний. Эл. Ресурс http://sdelaycomputersam.ru/Controller_irq.php,
  4. Прерывания. Контроллер прерываний. Устройство, функции, работа. Эл. Ресурс http://sdelaycomputersam.ru/Controller_irq.php
  5. Структура и инициализация контроллера прерываний Intel 8259A Эл.ресурс https://dev64.wordpress.com/2012/05/30/8259-programming/

Электронное периодическое издание зарегистрировано в Федеральной службе по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), свидетельство о регистрации СМИ — ЭЛ № ФС77-41429 от 23.07.2010 г.

Источник